Appendix I Noise Study

NOISE STUDY

LOCKWOOD DEVELOPMENT 3 PROJECT

2151 Lockwood Street, Oxnard, CA 93036

PREPARED FOR:

SVM Development LLC 1534 N. Moorpark Road, #337 Thousand Oaks, CA 91360

PREPARED BY:

Westlake Village Office 860 Hampshire Road, Suite P Westlake Village, CA 91361

SEPTEMBER 2023

Table of Contents

Section	Page
Executive Summary	
Project Description	2
Existing Conditions	5
Threshold of Significance	11
Methodology	15
Analysis	19
Certification	26

i

Appendix

- A Noise Monitoring Data Sheets
- B Roadway Noise Worksheets
- C Construction Noise Worksheets
- D Construction Vibration Worksheets
- E SoundPLAN Output Sheets

Figures

Figure	2	Page
1	Project Site Location	3
2	Site Plan	4
3	Noise Monitoring Location	9
4	Sensitive Receptor Map	10
	Tables	
Table		Page
1	Ambient Noise Measurements	5
2	Existing Roadway Noise Levels	7
3	Interpretation of Vibration Criteria for Detailed Vibration Analysis	12
4	Community Noise Exposure Ldn or CNEL, Db	13
5	Significance of Changes in Operational Roadway Noise Exposure	14
6	Construction Equipment by Phase	17
7	Maximum Noise Impacts Associated with On-Site Construction Activities	20
8	On-Site Construction Vibration Impacts - Human Annoyance	21
9	Existing plus Project Roadway Noise Levels	23
10	Cumulative plus Project Roadway Noise Levels	24
11	Exterior Façade Noise Levels	25

The purpose of this noise analysis is to provide an assessment of the impacts resulting from the Lockwood 3 Development Project (Project) and to identify any measures that may be necessary to reduce potentially significant impacts.

Construction Noise

The City currently does not have adopted standards, guidelines, or thresholds relative to construction noise. As such, available guidelines from the Federal Transit Authority (FTA) was considered to assess noise impacts due to construction. Average noise levels during construction would not result in noise levels that exceed 100 dBA (Leq-1hour) for commercial and industrial uses and 90 dBA (Leq-1hour) for residential uses.

Construction Vibration

The City currently does not have adopted standards, guidelines, or thresholds relative to ground-borne vibration. As such, available guidelines from the Federal Transit Authority (FTA) was considered to assess impacts due to ground-borne vibration during construction. The Project would result in construction-related vibration that is less than the FTA vibration-annoyance criteria of 78 VdB during the daytime (7:00 AM - 10:00 PM) for residential uses, 84 VdB for office uses and 90 VdB for workshop uses.

Roadway Noise


Project-related traffic would not cause noise levels along the analyzed roadways to increase by more than 3.0 dBA. Thus, the proposed Project would not result in a permanent increase in noise levels above ambient levels in the vicinity of the Project Site in excess of the City's Noise Element and Noise Ordinance. Vehicular related noise impacts would not be considered significant.

Exterior Noise

Specific numerical noise criteria are not included in the 2030 General Plan but are referenced in the General Plan Background Report. For residential and other sensitive uses, the maximum exterior Community Noise Equivalent Level (CNEL) that is considered compatible is 65 a-weight decibels (dBA). As a Project Design Feature, the northern boundary of the Project site adjacent to the US-101 freeway includes an 8-foot masonry wall with evergreen vine. Additionally, the outdoor living areas (patios and/or balconies) on the 2nd through 5th floor that are positioned facing towards the US-101 freeway would include a 42-inch solid wall railing. The 2nd floor would include an 8-inch glazing on top of the solid wall railing. The Project would adhere to the City's exterior standard of 65 dBA CNEL at the outdoor living that include patios and/or balconies.

PROJECT DESCRIPTION

The Project site is located in the northeast portion of the City on a vacant 225,359 square foot (5.17-acre) lot just north of the newly constructed Lockwood Street, as shown in Figure 1: Project Site Location. The Project includes construction of a 5-story 233-unit multi-family residential building, consisting of 24 studios units, 82 one-bedroom units, 103 two-bedroom units and 24 three-bedroom units, as shown in Figure 2: Site Plan. Residential uses would be located within the 2nd and 5th floors of the proposed development. As a Project Design Feature, the northern boundary of the Project site adjacent to the US-101 freeway includes an 8-foot masonry wall with evergreen vine. Additionally, the outdoor living areas (patios and/or balconies) on the 2nd through 5th floor that are positioned facing towards the US-101 freeway would include a 42-inch solid wall railing. The 2nd floor would include an 8-inch glazing on top of the solid wall railing. The Project site is located on a vacant Business Research Park (BRP) adjacent to retail and medical facilities such as Kaiser, St. Johns, and the senior/elderly Health Care Center Oxnard ADHC. The property to the south is undeveloped. Additionally, the developed site to the west is a car dealership and a Medical Office Building further down to the south at Outlet Center Drive.

Project Site Location

FIGURE 1

Site Plan

FIGURE 2

Meridian Consultants

Ambient Noise Measurements

The main noise generators within the City consist of vehicular traffic along the US-101 Ventura Freeway, other major roadways, the Oxnard Airport, the Union Pacific Railroad line, and a variety of stationary noise sources. The highest noise levels are adjacent to the US-101 Ventura Freeway. The City of Oxnard 2030 General Plan defines sensitive receptors as residential areas, hospitals, child and daycare facilities, convalescent homes and facilities, schools, and other similar land uses. These uses are considered sensitive because the presence of excessive noise may interrupt normal activities typically associated with their use. Additionally, increased noise levels occur along major arterials including Victoria Avenue, Channel Islands Boulevard, Ventura Road, and Oxnard Boulevard.

As mentioned previously, the Project site is located on vacant land surrounded by properties in the BRP zone. The Project site and the surrounding area are primarily subject to traffic noise associated with the US-101 Freeway to the north. Long-term (24-hour) noise measurements were conducted between August 1 - August 2, 2022, to characterize the daily noise levels generated within the Project site and provided in **Table 1: Ambient Noise Measurements. Figure 3: Noise Monitoring Location** depicts where the ambient noise measurement was conducted within the Project site. As shown in **Table 1**, ambient noise levels during the 24-hour period at the Project site was 77.4 dBA CNEL.

TABLE 1 AMBIENT NOISE MEASUREMENT						
Location Number/Description	Leq-Daytime (7:00 AM - 7:00 PM)	Leq-Evening (7:00 PM - 10:00 PM)	Leq-Nighttime (10:00 PM - 7:00 AM)	24-hour CNEL		
Between Proposed Lockwood I and approved Lockwood II Development	71.3	71.6	70.5	77.4		

Source: Refer to Appendix A for noise monitoring data sheets.

Notes: dBA = A-weighted decibels; Leq = average equivalent sound level.

Roadway Noise Levels

In addition to the ambient noise measurements near the Project Site, the existing traffic noise on local roadways in the surrounding areas was calculated to quantify the daytime and nighttime noise levels using information provided in the transportation impact analysis. The transportation impact analysis analyzed four segments within the Project vicinity. Traffic noise levels were calculated using the Federal Highway Administration Traffic Noise Model (FHWA TNM).

Table 2: Existing Roadway Noise Levels provides the calculated 24-hour CNEL noise levels for the analyzed local roadway segments based on existing traffic volumes. 24-hour CNEL levels attributed to roadway traffic range from a low of 64.8 dBA CNEL along Gonzales Road east of Lombart Street to a high of 69.6 dBA CNEL along Rice Avenue south of US Highway 101 SB Ramp. In terms of the City's land use compatibility categories based on roadway traffic only, all locations are classified as normally acceptable.

¹ Associated Transportation Engineers, Lockwood III Apartments Projects, dated October 11, 2022.

TABLE 2 EXISTING ROADWAY NOISE LEVELS

Roadway Segment	Adjacent Land _ Use	Existing Roadway Noise Level dBA CNEL	Existing Noise Exposure Compatibility Category
Rice Avenue			
North of US Highway 101 NB Ramp	Commercial	65.3	Normally Acceptable
South of US Highway 101 NB Ramp	Commercial	67.8	Normally Acceptable
North of US Highway 101 SB Ramp	Commercial	68.6	Normally Acceptable
South of US Highway 101 SB Ramp	Commercial	69.6	Normally Acceptable
North of Gonzales Road	Commercial	69.5	Normally Acceptable
South of Gonzales Road	Commercial	68.5	Normally Acceptable
Gonzales Road			
West of Rice Avenue	Commercial	65.6	Normally Acceptable
East of Solar Avenue	Commercial	65.7	Normally Acceptable
West of Solar Avenue	Commercial	65.0	Normally Acceptable
East of Lombart Street	Commercial	64.8	Normally Acceptable
West of Lombart Street	Commercial	65.6	Normally Acceptable
East of Williams Drive	Residential	65.5	Normally Acceptable
West of Williams Drive	Commercial	65.5	Normally Acceptable
East of Rose Avenue	Commercial	65.4	Normally Acceptable
West of Rose Avenue	Commercial	67.1	Normally Acceptable
Rose Avenue			
North of US Highway 101 NB Ramps	Commercial	66.3	Normally Acceptable
South of US Highway 101 NB Ramps	Commercial	66.6	Normally Acceptable
North of US Highway 101 SB Ramp	Commercial	67.6	Normally Acceptable
South of US Highway 101 SB Ramp	Commercial	68.2	Normally Acceptable
North of Lockwood Street	Commercial	68.5	Normally Acceptable
South of Lockwood Street	Commercial	67.5	Normally Acceptable
North of Gonzales Road	Commercial	67.7	Normally Acceptable
South of Gonzales Road	Commercial	67.2	Normally Acceptable

Source: Refer to Appendix B for Roadway Noise Worksheets.

Sensitive Uses

As mentioned previously, properties surrounding the vacant site are in the BRP zone and is adjacent to retail and medical facilities such as Kaiser, St. Johns, and the senior/elderly Health Care Center Oxnard ADHC. An overview of the surrounding sensitive land uses that may be impacted by the Proposed Project is provided below. Additionally, refer to **Figure 4: Sensitive Receptor Map** for location of the sensitive uses described below:

- <u>2201 Outlet Center Drive</u>: Located to the southeast of the Project site at the corner of Outlet Center Drive and Lockwood Street and Outlet Center drive, sensitive uses include the California Lutheran University Satellite campus.
- <u>1901 Outlet Center Drive</u>: Located to the south of the Project site across Lockwood Street at Outlet Center Drive, sensitive uses include the medical office building.
- <u>2024 Outlet Center Drive</u>: Located to the southeast of the Project site south of Lockwood Street along Outlet Center Drive, sensitive uses include the medical office building.
- <u>1900 Outlet Center Drive</u>: Located to the southeast of the Project site along Outlet Center Drive, sensitive uses include the medical office building.
- <u>2211 E. Gonzales Road</u>: Located to the southeast of the Project site along Gonzales Road, sensitive uses include the Pacific Senior Living assisted living facility.

SOURCE: Google Earth - 2022

FIGURE 3

Noise Monitoring Location

SOURCE: Google Earth - 2022

FIGURE 4

Sensitive Receptor Map

Construction Noise

The City does not have any adopted standards, guidelines, or thresholds relative to construction noise. To evaluate whether the Project will generate a substantial periodic increase in short-term noise levels at off-site sensitive receiver locations, a construction-related noise level threshold is adopted from the FTA Construction Noise Handbook for General Assessment Construction Noise Criteria. The FTA *Transit Noise and Vibration Impact Assessment Manual*² provides a general noise assessment guideline to assess potential noise impacts construction of transit projects. A general noise assessment is suitable and appropriate given the current stage of planning and evaluation for this Project. The FTA's General Assessment Construction Noise Criteria identifies daytime and nighttime thresholds for residential, commercial, and industrial land uses, which are considered reasonable criteria for use in assessing the potential for adverse community reaction to noise generated by construction activities.

The construction noise criteria threshold for residential uses is 90 dBA (Leq-1hour) during the daytime and 80 dBA (Leq-1hour) during the nighttime period. Additionally, construction noise thresholds for commercial and industrial uses are 100 dBA (Leq-1hour) during both the daytime and nighttime periods. Since the construction-related noise level threshold represents the energy average of the noise source over a given time, they are expressed as Leq noise levels.

Construction Vibration

The City currently does not have any adopted standards, guidelines, or thresholds relative to ground-borne vibration. As such, available guidelines from the FTA would be considered to assess impacts due to ground-borne vibration. The Proposed Project is required to implement construction techniques which result in construction-related vibration that is less than the maximum vibration levels for residential uses presented in **Table 3: Interpretation of Vibration Criteria for Detailed Vibration Analysis**. The criteria in this section are used to assess the potential for interference or annoyance from building response and to determine performance of vibration reduction methods. Development would be required to implement construction techniques which result in construction-related vibration that is less than the FTA vibration-annoyance criteria of 78 VdB during the daytime (7:00 AM - 10:00 PM) for residential uses, 84 VdB for office uses, and 90 VdB for workshop uses.

.

Federal Transit Administration, Transit Noise and Vibration Impact Assessment Manual, September 2018, accessed September 2021, https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/research-innovation/118131/transit-noise-and-vibration-impact-assessment-manual-fta-report-no-0123_0.pdf

TABLE 3 INTERPRETATION OF VIBRATION CRITERIA FOR DETAILED VIBRATION ANALYSIS					
Criterion Curve	Max Lv, VdB ¹	Description of Use			
Workshop	90	Vibration that is distinctly felt, Appropriate for workshops and similar areas not as sensitive to vibration.			
Office	84	Vibration that can be felt. Appropriate for offices and similar and areas not as sensitive to vibration.			
Residential Day	78	Vibration that is barely felt. Adequate for computer equipment and low-power optical microscopes (up to 20x).			
Residential Night	72	Vibration is not felt, but ground-borne noise may be audible inside quiet rooms. Suitable for medium-power optical microscopes (100X) and other equipment of low sensitivity.			

Note:

Lv = vibration level; VdB = RMS velocity in decibels.

Source: FTA Transit Noise and Vibration Handbook, Table 6-6: Interpretation of Vibration Criteria for Detailed Vibration Analysis.

Operation

Specific numerical noise criteria are not included in the 2030 General Plan but are referenced in the General Plan Background Report. The California Code of Regulations sets forth requirements for the insulation of multiple-family residential dwelling units from excessive and potentially harmful noise. The State indicates that locating units in areas where exterior ambient noise levels exceed 65 dBA is undesirable. Whenever such units are to be located in such areas, the developer must incorporate into building design various construction features which reduce interior noise levels to 45 dBA CNEL. **Table 4: Community Noise Exposure Ldn or CNEL, Db** presents criteria used to assess the compatibility of proposed land uses with the noise environment. As shown, normally acceptable noise levels for residential multi-family uses are 65 dBA CNEL or less. Pursuant to the City's Zoning Code Section 16-420J(F)(2), the Applicant shall submit evidence to the satisfaction of the Director that all units with patios and/or balconies meet the 65 dBA CNEL.

¹ As measured in 1/3-octave bands of frequency over the frequency range 8 to 80 Hz.

TABLE 4 COMMUNITY NOISE EXPOSURE LDN OR CNEL, DB							
Land Use Category	Normally Acceptable	Conditionally Acceptable	Normally Unacceptable	Clearly Unacceptable			
Residential - Low Density, Single Family, Duplex, Mobile Homes	<60	55-70	70-75	>80			
Residential - Multi Family	<65	60-70	70-75	>75			
Transient Loding - Motels, Hotels	<65	60-70	70-80	>80			
Schools, Libraries, Churches, Hospitals, Nursing Homes	<70	60-70	70-80	>80			
Auditoriums, Concert Halls, Amphitheaters	NA	<70	NA	>65			
Sports Arena, Outdoor Spectator Sports	NA	<75	NA	>70			
Playgrounds, Neighborhood Parks	<70	67.5-75	NA	>72.5			
Golf Courses, Riding Stables, Water Recreation, Cemeteries	<75	70-80	70-80	>80			
Office Buildings, Business Commercial and Professional	<70	67.5-77.5	>75	NA			
Industrial, Manufacturing Utilities, Agriculture	<75	70-80	>75	NA			

Note:

<u>Normally Acceptable</u> - Specified land use is satisfactory, based upon the assumption that any buildings involved are of normal convention construction, without any special noise insulation requirements.

<u>Conditionally Acceptable</u> - New construction or development should be undertaken only after a detailed analysis of the noise reduction requirements is made and needed noise insulation features included in the design - Conventional construction, but with closed windows and fresh air supply systems or air conditioning will normally suffice

<u>Normally Unacceptable</u> - New construction or development should generally be discouraged - If new construction or development does proceed, a detailed analysis of the noise reduction requirements must be made and needed noise insulation features included in the design.

<u>Clearly Unacceptable</u> - New construction or development should generally not be undertaken.

<u>NA</u> - Not applicable.

 $Source: \ California\ Office\ of\ Planning\ and\ Research,\ General\ Plan\ Guidelines,\ 2003.$

The FTA has recommended noise criteria related to traffic-generated noise. These recommendations can be used as guidance to determine whether or not a change in traffic would result in "substantial" permanent increase in noise. The allowable noise exposure increase is reduced with increasing ambient existing noise exposure, such that higher ambient noise levels have a lower allowable noise exposure increase. **Table 5: Significance of Changes in Operational Roadway Noise Exposure** shows the significance thresholds for increases in traffic-related noise levels. These standards are applicable to project-related impacts on existing sensitive receptors. For noise exposures above 75 dBA CNEL, there is no allowable noise exposure increase. As shown in **Table 5**, the ambient noise exposure within the Project site is 77.4 dBA CNEL. As such, there is no allowable noise exposure increase limit for this portion of the site.

TABLE 5 SIGNIFICANCE OF CHANGES IN OPERATIONAL ROADWAY NOISE EXPOSURE						
Existing Noise Exposure (dBA Ldn or Leq)	Allowable Noise Exposure Increase (dBA Ldn or Leq)					
45-49	7					
50-54	5					
55-59	3					
60-64	2					
65-74	1					
75+	0					

Source: City of Oxnard CEQA Guidelines, Table 5: Significance of Changes in Operational Roadway Noise Exposure, May 2017,

Ambient Noise Measurements

Noise-level monitoring was conducted by Meridian Consultants between August 1 - August 2, 2022 along Puente Street, as shown in **Figure 3**. Noise-level monitoring was conducted for a 24-hour period using a Larson Davis Model 831 sound-level meter. This meter satisfies the American National Standards Institute (ANSI) standard for general environmental noise measurement instrumentation. The ANSI specifies several types of sound-level meters according to their precision. Types 1, 2, and 3 are referred to as "precision," "general-purpose," and "survey" meters, respectively. Most measurements carefully taken with a Type 1 sound-level meter will have a margin of error not exceeding 1 dB.

The Larson Davis Model 831 is a Type 1 precision sound-level meter. This meter meets all requirements of ANSI S1.4-1983 and ANSI1.43-1997 Type 1 standards, as well as International Electrotechnical Commission (IEC) IEC61672-1 Ed. 1.0, IEC60651 Ed 1.2, and IEC60804 Type 1, Group X standards. The sound-level meter was located approximately 5 feet above ground and was covered with a Larson Davis windscreen. The sound-level meter was field calibrated with an external calibrator prior to operation.

Construction Noise

Future dates represent approximations based on the general Project timeline and are subject to change pending unpredictable circumstances that may arise. Construction would occur over the following phases: (1) Site Preparation; (2) Grading; (3) Building Construction; (4) Paving; and (5) Architectural Coating.

Each phase of construction would result in varying levels of intensity and a number of construction personnel. The construction workforce would consist of approximately 18 worker trips per day during site preparation; approximately 15 worker trips per day and approximately 4 hauling trips per day during grading; approximately 201 worker trips per day and approximately 38 vendor trips per day during building construction; approximately 15 worker trips per day during paving; and approximately 41 worker trips per day during architectural coating.

On-Site Construction Equipment

Construction activities typically generate noise from the operation of equipment within the Project Site that is required for the construction of various facilities. Noise impacts from on-site construction equipment as well as the on-site staging of construction trucks were evaluated by determining the noise levels generated by different types of construction activity and calculating the construction-related noise level at nearby noise-sensitive receptor locations. Actual construction noise levels would vary, depending upon the equipment type, model, the type of work activity being performed, and the condition of the equipment.

In order to calculate construction noise levels, hourly activity or utilization factors (i.e., the percentage of normal construction activity that would occur, or construction equipment that would be active, during

each hour of the day) are estimated based on the temporal characteristics of other previous and current construction projects. The hourly activity factors express the percentage of time that construction activities would emit average noise levels. Typical noise levels for each type of construction equipment were obtained from the FHWA Roadway Construction Noise Model.³

An inventory of construction equipment, including the number and types of equipment, which would be operating simultaneously within the Project Site was identified for each phase/component of construction and shown in **Table 6:** Construction Equipment by Phase. It is highly unlikely that all pieces of construction equipment identified in **Table 6** would operate simultaneously in any specific location during construction because equipment is generally operated only when needed and space constraints limit the equipment that can be used at any one time in a specific location. Therefore, this modeling is considered a conservative approach to calculate the maximum noise levels that would be generated.

The calculated average noise levels provided in **Table 6** were inputted into the noise model SoundPLAN, ⁴ which generates computer simulations of noise propagation from sources such as construction noise. SoundPLAN forecasts noise levels at specific receptors using sound power data and three-dimensional topographical data.

-

U.S. Department of Transportation, FHWA Roadway Construction Noise Model Final Report, January 2006, accessed March 2022, https://www.fhwa.dot.gov/environment/noise/construction_noise/rcnm/rcnm.pdf

⁴ SoundPLAN model is in compliance with ISO 9613-2 standards for assessing attenuation of sound propagating outdoors and general calculation method.

TABLE 6 CONSTRUCTION EQUIPMENT BY PHASE						
Construction Phase	Equipment Type	Quantity	Usage Hours (per day)	Noise Level at 25 feet (dBA Leq-1hour)	Calculated Average Noise Level (dBA Leq-1hour)	
Site	Rubber Tired Dozers	3	8	88.5	93.6	
Preparation	Tractors/Loaders/Backhoes	4	8	92.1	93.0	
	Excavators	1	8	82.8		
م مانات ما	Graders	1	8	87.0	93.3	
Grading	Rubber Tired Dozers	1	8	83.7	93.3	
	Tractors/Loaders/Backhoes	3	8	90.8		
	Cranes	1	7	78.6		
Building	Forklifts	3	8	92.8	05.3	
Construction	Generator Sets	1	8	83.6	95.3	
	Tractors/Loaders/Backhoes	3	7	90.8		
	Pavers	2	8	83.2		
Paving	Paving Equipment	2	8	83.2	87.0	
	Rollers	1	6	79.0		
Architectural Coating	Air Compressors	1	6	79.7	79.7	

Source: FHWA Roadway Construction Noise Model (RCNM) version 1.1

Refer to Appendix C for construction noise worksheets.

Construction Equipment Vibration

Construction activity can result in varying degrees of ground vibration, depending on the equipment and methods employed. The operation of construction equipment causes ground vibrations that spread through the ground and diminish in strength with distance. While ground vibrations from construction activities do not often reach the levels that can damage structures, fragile buildings must receive special consideration.

Impacts due to construction activities were evaluated by identifying vibration sources (i.e., construction equipment), measuring the distance between vibration sources and surrounding structure locations, and making a significance determination.

For quantitative construction vibration assessments related to building damage and human annoyance, vibration source levels for construction equipment are taken from the FTA *Transit Noise and Vibration Impact Assessment Manual*. Building damage would be assessed for each piece of equipment individually and assessed in terms of peak particle velocity. Ground-borne vibration related to human annoyance is assessed in terms of rms velocity levels.

⁵ FTA, Transit Noise and Vibration Impact Assessment Manual, September 2018, accessed August 2022, https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/research-innovation/118131/transit-noise-and-vibration-impact-assessment-manual-fta-report-no-0123_0.pdf

The vibration source levels for various types of equipment are based on data provided by the FTA.

Operation

Roadway Noise

Traffic noise levels were modeled using the FHWA TNM. The FHWA TNM calculates noise associated with a specific line source and the results characterize noise generated by motor vehicle travel along a specific roadway segment. The traffic noise impact analysis is based on the 24-hour CNEL noise descriptor and incorporates traffic volumes, vehicle mix, posted speed limits, roadway geometry, and site conditions. Noise levels were evaluated with respect to the following traffic scenarios:

- Existing (2022) Conditions;
- Existing (2022) plus Project Conditions;
- Cumulative without Project Conditions; and
- Cumulative with Project Conditions.

Noise impacts due to off-site motor vehicle travel were analyzed by comparing the projected increase in traffic noise levels from without Project conditions to plus proposed Project to the applicable significance criteria. Cumulative plus Project conditions include traffic volumes from future ambient growth, related projects, and the proposed Project.

Exterior Noise

Noise-level calculations at the Project site were assessed using the SoundPLAN noise model. The SoundPLAN model depicts noise contours at varying distances and accounts for various inputs to analyze topography, vegetation, propagation from buildings, and existing- and proposed-noise sources and barriers. The SoundPLAN model takes into account the distances between the noise sources and the receiver to depict noise contours at varying distances. The software utilizes algorithms (based on the inverse square law) to calculate noise level projections. Accuracy has been validated in published studies to be +/- 2.7 dBA with an 85 percent confidence level. The software allows the user to input specific noise sources, spectral content, sound barriers, building placement, topography, and sensitive receptor locations.

The roadway noise environment along US-101 Freeway was modeled based on average annual daily trips (AADTs) from existing volumes (Year 2021) ahead of Rose Avenue obtained from Caltrans. ⁶

_

⁶ Caltrans 2021 Traffic Volume, https://dot.ca.gov/programs/traffic-operations/census

Construction Noise

Noise from construction activities would be affected by the amount of construction equipment, the location of this equipment, the timing and duration of construction activities, and the relative distance to noise-sensitive receptors. Construction activities that would occur during the construction phases would generate both steady-state and episodic noise that would be heard both on and off the Project site. Each construction phase involves the use of different types of construction equipment and, therefore, has its own distinct noise characteristics. The Project would be constructed using typical construction techniques; no blasting or impact pile driving would be required.

The construction equipment reference noise levels provided in **Table 7** above, are based on measured noise data compiled by the FHWA and would occur when equipment is operating under full power conditions. However, equipment used on construction sites typically operate at less than full power. The acoustical usage factor is the percentage of time that each type of construction equipment is anticipated to be in full power operation during a typical construction day. These values are estimates and will vary based on the actual construction process and schedule.

Construction equipment operates at its noisiest levels for certain percentages of time during operation. As such, equipment would operate at different percentages over the course of an hour. During a construction day, the highest noise levels would be generated when multiple pieces of construction equipment are operated concurrently.

To characterize construction-period noise levels, the average (hourly Leq) noise level associated with each construction stage was calculated based on the quantity, type, and usage factors for each type of equipment that would be used during each construction stage. These noise levels are typically associated with multiple pieces of equipment operating simultaneously.

The estimated construction noise levels were calculated for each of the analyzed receptors (refer to **Figure 4: Noise Sensitive Receptors**) during each of the construction phases. As mentioned previously, given the physical size of the Project site and logistical limitations, and with the noise equipment located at the construction area nearest to the affected receptors to present a conservative impact analysis. This is considered a worst-case evaluation because construction of the Project would typically use fewer pieces of equipment simultaneously at any given time as well as operating throughout the construction site (i.e., most of the time construction equipment would be operating at distances further away from

⁷ Federal Highway Administration, Traffic Noise Model (2006).

the off-site receptors than that assumed in the forecasting of Project construction noise levels). As such, Project construction would often generate lower noise levels than reported herein.

Table 7: Maximum Noise Impacts Associated with On-Site Construction Activities presents the maximum noise impacts that are forecasted to occur at each of the receptor sites. As shown, average noise levels during construction would not result in noise levels that exceed 100 dBA (Leq-1hour) for commercial and industrial uses and 90 dBA (Leq-1hour) for residential uses. As such, construction noise impacts would not be considered significant.

TABLE 7 MAXIMUM NOISE IMPACTS ASSOCIATED WITH ON-SITE CONSTRUCTION ACTIVITIES							
	Calculated	Noise Level	l (Leq-1hour) b	y Constru	uction Phase		
Location	Site Preparation	Grading	Building Construction	Paving	Architectural Coating	Exceeds Significance Threshold?	
1902 Outlet Center Drive Medical Office Building 1	75.5	75.2	72.8	68.9	57.2	No	
2024 Outlet Center Drive Medical Office Building 2	74.9	74.6	72.7	68.3	57.1	No	
1900 Outlet Center Drive Medical Office Building 3	76.0	75.7	73.6	69.4	58.0	No	
2211 E. Gonzales Road, Pacific Senior Living	73.1	72.8	70.5	66.5	54.9	No	
2201 Outlet Center Drive, California Lutheran University	87.1	86.8	81.8	80.5	66.2	No	

Refer to Appendix C for Construction Noise Worksheets.

Construction Vibration

Table 8: On-Site Construction Vibration Impacts-Human Annoyance presents the construction vibration impacts associated with on-site construction in terms of human annoyance. As shown in Table 8, the forecasted vibration levels due to on-site construction activities would not exceed the residential significance threshold of 78 VdB, the office significance threshold of 84 VdB and the workshop significance threshold of 90 VdB for human annoyance for all sensitive sites surrounding the Project area during construction. Due to the distance of the Project-identified sensitive receptors, changes in elevations, and intervening structures, such as buildings and walls, on-site construction vibration would not result in a significant vibration impact with regard to human annoyance. Impacts related to human annoyance from on-site construction vibration would not be considered significant.

TABLE 8 ON-SITE CONSTRUCTION VIBRATION IMPACTS - HUMAN ANNOYANCE

Nearest Off-Site							Significance	e	
Building Structures	Vibratory Roller	Large Bulldozer	Caisson Drilling	Loaded Trucks	Jack- hammer	Small bulldozer	Threshold (VdB)	Exceeds Threshold?	
FTA Reference	e Vibration L	evels at 25 fe	<u>eet</u>						
	94	87	87	86	79	58	_	_	
California Lutheran University	87	79	79	78	71	50	90	No	
1901 Outlet Center Drive (MOB)	53	46	46	44	37	16	84	No	
2024 Outlet Center Drive (MOB)	57	49	49	48	41	20	84	No	
1900 Outlet Center Drive (MOB)	53	44	45	44	37	16	84	No	
Pacific Senior Living Oxnard	52	44	44	43	36	15	78	No	

Source: Refer to **Appendix D** for construction vibration worksheets.

Note: MOB = Medical Office Building.

Operation

Roadway Noise

Existing plus Project

Table 9: Existing plus Project Roadway Noise Levels illustrates the change in noise levels from traffic volumes and from traffic generated by the Project. The difference in traffic noise between existing conditions and existing plus Project conditions represents the increase in noise attributable to Project-related traffic. As shown in Table 9, the maximum noise level increase along the analyzed roadways were 0.1 dBA CNEL along Rice Avenue north of US Highway 101 SB Ramp and North of Gonzales Road, along Gonzales Road east of Solar Avenue, East of Lombart Street and East of Rose Avenue. Consequently, Project-related traffic would not cause noise levels along the analyzed roadways to increase by more than 3.0 dBA. Thus, the proposed Project would not result in a permanent increase in noise levels above ambient levels in the vicinity of the Project Site in excess of the City's Noise Element and Noise Ordinance. Vehicular related noise impacts would not be considered significant.

TABLE 9 EXISTING PLUS PROJECT ROADWAY NOISE LEVELS								
Existing, dBA CNEL								
Roadway Segment	Without Project	With Project	Difference	Significant Impact?				
Rice Avenue								
North of US Highway 101 NB Ramp	65.3	65.3	0.0	No				
South of US Highway 101 NB Ramp	67.8	67.8	0.0	No				
North of US Highway 101 SB Ramp	68.6	68.7	+0.1	No				
South of US Highway 101 SB Ramp	69.6	69.6	0.0	No				
North of Gonzales Road	69.5	69.6	+0.1	No				
South of Gonzales Road	68.5	68.5	0.0	No				
Gonzales Road								
West of Rice Avenue	65.6	65.6	0.0	No				
East of Solar Avenue	65.7	65.8	+0.1	No				
West of Solar Avenue	65.0	65.0	0.0	No				
East of Lombart Street	64.8	64.9	+0.1	No				
West of Lombart Street	65.6	65.6	0.0	No				
East of Williams Drive	65.5	65.5	0.0	No				
West of Williams Drive	65.5	65.5	0.0	No				
East of Rose Avenue	65.4	65.5	+0.1	No				
West of Rose Avenue	67.1	67.1	0.0	No				
Rose Avenue								
North of US Highway 101 NB Ramps	66.3	66.3	0.0	No				
South of US Highway 101 NB Ramps	66.6	66.6	0.0	No				
North of US Highway 101 SB Ramp	67.6	67.6	0.0	No				
South of US Highway 101 SB Ramp	68.2	68.2	0.0	No				
North of Lockwood Street	68.5	68.5	0.0	No				
South of Lockwood Street	67.5	67.5	0.0	No				
North of Gonzales Road	67.7	67.7	0.0	No				
South of Gonzales Road	67.2	67.2	0.0	No				

Source: Refer to Appendix B for roadway noise worksheets

Cumulative plus Project

Table 10: Cumulative plus Project Roadway Noise Levels illustrates the change in noise levels from traffic volumes and from traffic generated by the Project. The difference in traffic noise between cumulative conditions and cumulative plus Project conditions represents the increase in noise attributable to Project-related traffic. As shown in Table 10, the maximum noise level increase along the analyzed roadways were 0.1 dBA CNEL along Rice Avenue south of US Highway 101 NB Ramp, along Gonzales Road east of Lombart Street, west of Lombart Street, west of Williams Drive, east of Rose Avenue and along Rose Avenue south of US Highway 101 SB Ramp. Consequently, Project-related traffic would not cause noise levels along the analyzed roadways to increase by more than 3.0 dBA. Thus, the

proposed Project would not result in a permanent increase in noise levels above ambient levels in the vicinity of the Project Site in excess of the City's Noise Element and Noise Ordinance. Vehicular related noise impacts would not be considered significant.

TABLE 10 CUMULATIVE PLUS PROJECT ROADWAY NOISE LEVELS												
	Cumulative,	dBA CNEL										
Roadway Segment	Without Project	With Project	Difference	Significant Impact?								
Rice Avenue												
North of US Highway 101 NB Ramp	66.1	66.1	0.0	No								
South of US Highway 101 NB Ramp	68.6	68.7	+0.1	No								
North of US Highway 101 SB Ramp	70.2	70.2	0.0	No								
South of US Highway 101 SB Ramp	71.2	71.2	0.0	No								
North of Gonzales Road	71.4	71.4	0.0	No								
South of Gonzales Road	70.8	70.8	0.0	No								
Gonzales Road												
West of Rice Avenue	67.0	67.0	0.0	No								
East of Solar Avenue	68.4	68.4	0.0	No								
West of Solar Avenue	68.0	68.0	0.0	No								
East of Lombart Street	67.9	68.0	+0.1	No								
West of Lombart Street	68.3	68.4	+0.1	No								
East of Williams Drive	68.3	68.3	0.0	No								
West of Williams Drive	68.2	68.3	+0.1	No								
East of Rose Avenue	68.2	68.3	+0.1	No								
West of Rose Avenue	69.2	69.2	0.0	No								
Rose Avenue												
North of US Highway 101 NB Ramps	67.0	67.0	0.0	No								
South of US Highway 101 NB Ramps	67.3	67.3	0.0	No								
North of US Highway 101 SB Ramp	68.0	68.0	0.0	No								
South of US Highway 101 SB Ramp	68.5	68.6	+0.1	No								
North of Lockwood Street	69.1	69.1	0.0	No								
South of Lockwood Street	68.2	68.2	0.0	No								
North of Gonzales Road	68.3	68.3	0.0	No								
South of Gonzales Road	67.8	67.8	0.0	No								

Source: Refer to Appendix B for roadway noise worksheets

Exterior Noise

As shown in **Table 3** above, the ambient noise exposure within the Project site is 77.4 dBA CNEL. There is no allowable noise exposure increase limit for ambient noise exposures above 75 dBA CNEL. As a Project Design Feature, the northern boundary of the Project site adjacent to the US-101 freeway includes an 8-foot masonry wall with evergreen vine. Additionally, the outdoor living areas (patios and/or balconies) on the 2nd through 5th floor that are positioned facing towards the US-101 freeway between 160 feet to 180 feet to the freeway centerline would include a 42-inch solid wall railing. The 2nd floor would include an 8-inch glazing on top of the solid wall railing. As shown in **Table 11: Exterior Façade Noise Levels**, the outdoor living areas positioned facing towards the US-101 Ventura Freeway would be attenuated to be below the maximum exterior standard of 65 dBA CNEL. As such, the Proposed Project would adhere to the City's exterior standard for outdoor living areas such as the patios and/or balconies. No further mitigation is required.

TABLE 11 EXTERIOR FAÇADE NOISE LEV	/ELS	
Distance from Freeway Centerline	Floor	dba cnel
	2 nd	61.6
160 feet	3 rd	62.4
160 feet	4 th	61.9
	5 th	62.3
	2 nd	61.1
180 feet	3 rd	63.7
roo reet	4 th	62.5
	5 th	61.8

Source: SoundPLAN

Refer to Appendix E for SoundPLAN Output Sheets.

CERTIFICATION

The contents of this noise study represent an accurate depiction of the noise environment and impacts associated with the proposed Lockwood Development 3 Project. The information contained in this noise study is based on the best available information at the time of preparation. If you have any questions, please contact me directly at (818) 415-7274.

Sincerely,

Christ Kirikian, INCE

Principal | Director of Air Quality & Acoustics

ckirikian@meridianconsultantsllc.com

Monitoring Location: Development Site 3 Date: August 1 - August 2, 2022

					Evening	g/Night
	Monitoring		Monitored	Logarithmic	Adjust	tments
	Period		Leq	Equivalent	10 dB	5 dB
Mid	lnight	0 / 24	67.4	5471835	54718351	17303462
am	1:00	100	66.2	4174784	41747839	13201826
	2:00	200	66.2	4194537	41945367	13264290
	3:00	300	67.6	5734638	57346379	18134517
	4:00	400	69.9	9724964	97249639	30753036
	5:00	500	73.4	21703811	217038111	68633477
	6:00	600	75.1	32500123	325001227	102774412
	7:00	700	74.4	27623328	276233280	87352633
	8:00	800	74.0	25220053	252200533	79752811
	9:00	900	72.5	17766137	177661367	56181457
	10:00	1000	71.9	15432454	154324543	48801706
	11:00	1100	71.7	14916434	149164336	47169905
	12:00	1200	70.3	10651996	106519961	33684569
pm	1:00	1300	69.6	9219811	92198106	29155601
	2:00	1400	69.8	9659374	96593744	30545624
	3:00	1500	70.0	9990012	99900118	31591191
	4:00	1600	69.6	9179711	91797108	29028794
	5:00	1700	71.0	12535308	125353077	39640124
	6:00	1800	72.4	17402715	174027147	55032216
	7:00	1900	72.0	16004459	160044591	50610543
	8:00	2000	71.6	14576626	145766256	46095338
	9:00	2100	70.9	12370037	123700370	39117492
	10:00	2200	69.8	9562886	95628865	30240502
pm	11:00	2300	68.3	6835574	68355742	21615983

Desi	ant Name						/D-	4-1			1		1	If Dook Hour - 60	V of ADT Coolin	- F 10 00°	,	I	
	ect Name ekday AM/PM Pe	ala I Ia					rev. (Da	te)						If Peak Hour = 69 If Peak Hour = 79					
Wee	Kuay AM/PM Pe	ak noui	volume	#5													0		
		,												If Peak Hour = 89	% of ADT, Scall	ig Factor = 12.5	4		
	Intersection:	1	L NID D											If Peak Hour = 99	% of ADI, Scalin				
	Rice Avenue and	08 101	I NB Kar	np										If Peak Hour = 10	0% of AD1, Scal				
																ADT			-
						Rice Ave	Э							Road		Ave		NB Ramp	
					Southbound									Leg	North of	South of	East of	West of	
						<u>right</u>	through	<u>left</u>						Cross Street		NB Ramp		e Ave	
					Existing (AM)	115	598							Existing (AM)	12,392.0	21,752.0	7,432.0	12,104.0	
					Existing (PM)	143	641							Existing (PM)	11,800.0	19,264.0	7,072.0	8,328.0	
					Existing + Project	115	601			L				Existing + Projec	12,432.0	21,896.0	7,536.0	12,104.0	
					Existing + Project	143	642							Existing + Projec	11,840.0	19,336.0	7,104.0	8,328.0	
					Cumulative (AM)	133	713							Cumulative (AM)	14,920.0	26,640.0	8,392.0	14,288.0	
					Cumulative (PM)	157	842			L				Cumulative (PM)	15,392.0	24,136.0	8,152.0	10,208.0	
	Eastbound				Cumulative + Pro	133	716		Westbound					Cumulative + Pro	14,960.0	26,784.0	8,496.0	14,288.0	
		<u>left</u>	through	right	Cumulative + Pro	157	843			right	through	<u>left</u>		Cumulative + Pro	15,432.0	24,208.0	8,184.0	10,208.0	
Ε	Existing (AM) Existing (PM)	148		561					Existing (AM)	38	335	556							
8	Existing (PM)	138		334					Existing (PM)	15	200	669							
æ	Existing + Project	148		561					Existing + Project	38	335	569							
	Existing + Project	138		334					Existing + Project	15	200	673							
101	Cumulative (AM)	164		661					Cumulative (AM)	40	348	661							
<u>S</u>	Cumulative (PM)	196		434					Cumulative (PM)	23	225	771							
-	Cumulative + Pro	164		661					Cumulative + Pr	40	348	674							
	Cumulative + Pro	196		434	Northbound				Cumulative + Pr	23	225	775							
						<u>left</u>	through	right											
					Existing (AM)	354	650												
					Existing (PM)	226	538												
					Existing + Project	354	652												
					Existing + Project	226	542												
					Cumulative (AM)	480	815												
					Cumulative (PM)	264	706												
					Cumulative + Pro	480	817												
					Cumulative + Pro	264	710												
																			1
																			1
																			+

2 NOI SE LEVEL CONTOURS - Existing Plus Project Weekday Off-Site ADT Volumes

-												Traffic Volu	mes							Ref. Er	nergy Lo	evels Di	st Ld				Le			Ln			
					Design	Dist. fron	n	Barrier	Vehic	le Mix																							
ROADWAY NAME			Median	ADT	Speed	Center to	Alpha	Attn.	Medium	Heavy	dB(A)	Day Eve	Night I	MTd F	HTd I	ΜTe ⊢	Te N	MTn F	HTn /	A 1	MT F	T Ac	ijΑ	MT	HT	Total	A I	MT H	T Tơ	otal A	MT	HT :	Total
	Land Use	Lanes	Width	Volume	(mph)	Receptor	Factor (1	dB(A)	Trucks	Trucks	CNEL																						
Rice Ave n/o US Highway 101																																	
Existing (AM)		6	0	12,392	45	75	0	0	1.8%	0.7%	65.3	##### #####	#####	195	77	11	2	17	7	69.3	77.6	32.1 -1	.5 6	5.0 56	.4 56.9	∂ 66.1	62.0	48.9	46.8 62	2.3 48.8	8 47.0	47.7	52.7
Existing (PM)		6	0	11,800	45	75	0	0	1.8%	0.7%	65.1	##### #####	#####	186	74	11	2	16	7	69.3	77.6	32.1 -1	.5 6	1.8 56	.2 56.7	7 65.9	61.8	48.6	46.6 62	2.1 48.6	6 46.8	47.5	52.4
Existing plus Project (AM)		6	0	12,432	45	75	0	0	1.8%	0.7%	65.3	##### #####	#####	196	78	11	2	17	7	69.3	77.6	32.1 -1	.5 6	5.0 56	.4 56.9	∂ 66.1	62.0	48.9	46.8 62	2.3 48.8	8 47.0	47.7	52.7
Existing plus Project (PM)		6	0	11,840	45	75	0	0	1.8%	0.7%	65.1	##### #####	#####	186	74	11	2	16		69.3								48.7					
Cumulative (AM)		6	0	14,920	45	75	0	0	1.8%	0.7%	66.1	##### #####	#####	235	93	14	3	20	8	69.3	77.6	32.1 -1	.5 6	5.8 57	.2 57.7	7 66.9	62.8	49.7	47.6 63	3.1 49.6	ô 47.8	48.5	53.5
Cumulative (PM)		6	0	15,392	45	75	0	0	1.8%	0.7%	66.3	#####	#####	242	96	14	3	21	9	69.3	77.6	32.1 -1	.5 6	5.9 57	.4 57.9	3 67.0	62.9	49.8	47.7 63	3.3 49.7	7 47.9	48.6	53.6
Cumulative plus Project (AM)		6	0	14,960	45	75	0	0	1.8%	0.7%	66.1	##### #####	#####	235	93	14	3	20	8	69.3	77.6	32.1 -1	.5 6	5.8 57	.3 57.8	3 66.9	62.8	49.7	47.6 63	3.1 49.6	6 47.8	48.5	53.5
Cumulative plus Project (PM)		6	0	15,432	45	75	0	0	1.8%	0.7%	66.3	##### #####	#####	243	96	14	3	21	9	69.3	77.6	32.1 -1	.5 6	5.9 57	.4 57.9	∂ 67.1	62.9	49.8	47.7 63	3.3 49.7	7 47.9	48.7	53.6
Rice Ave s/o US Highway 101																																	
Existing (AM)		6	0	21,752	45	75	0	0	1.8%	0.7%	67.8	##### #####	#####	342	136	20	4	29												4.8 51.2		50.1	55.1
Existing (PM)		6	0	19,264	45	75	0	0	1.8%	0.7%	67.2	##### #####	####	303	120	18	4	26			77.6									4.2 50.7		49.6	
Existing plus Project (AM)		6	0	21,896	45	75	0	0	1.8%	0.7%	67.8	##### #####	#####	345	137	20	4	30	12	69.3	77.6	32.1 -1	.5 6	7.4 58	.9 59.4	4 68.6	64.5	51.3	49.2 64	4.8 51.3	3 49.5	50.2	55.1
Existing plus Project (PM)		6	0	19,336	45	75	0	0	1.8%	0.7%	67.3	##### #####	#####	304	121	18	4	26	11	69.3	77.6	32.1 -1	.5 6	5.9 58	.4 58.9	∂ 68.0	63.9	50.8	48.7 64	4.2 50.7	7 48.9	49.6	54.6
Cumulative (AM)		6	0	26,640	45	75	0	0	1.8%	0.7%	68.6	##### #####	#####	419	166	24	5	36	15	69.3	77.6	32.1 -1	.5 6	3.3 59	.8 60.3	3 69.4	65.3	52.2	50.1 65	5.6 52.1	1 50.3	51.0	56.0
Cumulative (PM)		6	0	24,136	45	75	0	0	1.8%	0.7%	68.2	#### ####	#####	380	151	22	5	33	14	69.3	77.6	32.1 -1	.5 6	7.9 59	.3 59.8	3 69.0	64.9	51.7	49.7 65	5.2 51.7	7 49.9	50.6	55.6
Cumulative plus Project (AM)		6	0	26,784	45	75	0	0	1.8%	0.7%	68.7	##### #####	#####	422	167	24	5	36												5.7 52.		51.0	
Cumulative plus Project (PM)		6	0	24,208	45	75	0	0	1.8%	0.7%	68.2	##### #####	#####	381	151	22	5	33	14	69.3	77.6	32.1 -1	.5 6	7.9 59	.3 59.8	3 69.0	64.9	51.8	49.7 65	5.2 51.7	7 49.9	50.6	55.6
US Highway 101 NB Ramp																																	
Existing (AM)		2	0	7,432	35	75	0	0	1.8%	0.7%	60.2	#### 944	713	117	46	7	1	10	4											6.7 43.1		44.1	
Existing (PM)		2	0	7,072	35	75	0	0	1.8%	0.7%	59.9	#### 898	679	111	44	6	1	10	4	65.1	74.8	30.0 -1	.8 5	9.0 51	.9 53.	60.6	56.0	44.3	43.0 56	6.5 42.8	8 42.5	43.9	47.9
Existing plus Project (AM)		2	0	7,536	35	75	0	0	1.8%	0.7%	60.2	#### 957	723	119	47	7	1	10	4	65.1	74.8	30.0 -1	.8 5	9.3 52	.2 53.4	1 60.9	56.3	44.6	43.2 56	6.8 43.	1 42.8	44.2	48.2
Existing plus Project (PM)		2	0	7,104	35	75	0	0	1.8%	0.7%	60.0	#### 902		112	44	6	1	10												6.5 42.9			
Cumulative (AM)		2	0	8,392	35	75	0	0	1.8%	0.7%	60.7	##### #####	806	132	52	8	2	11												7.3 43.6			48.6
Cumulative (PM)		2	0	8,152	35	75	0	0	1.8%	0.7%	60.6	##### #####	783	128	51	7	2	11	5											7.1 43.5			
Cumulative plus Project (AM)		2	0	8,496	35	75	0	0	1.8%	0.7%	60.7	##### #####	816	134	53	8	2	12	5	65.1	74.8	30.0 -1	.8 5	9.8 52	.7 53.9	9 61.4	56.8	45.1	13.8 57	7.3 43.6	ô 43.3	44.7	48.7
Cumulative plus Project (PM)		2	0	8,184	35	75	0	0	1.8%	0.7%	60.6	##### #####	786	129	51	7	2	11	5	65.1	74.8	30.0 -1	.8 5	9.7 52	.6 53.8	3 61.3	56.7	45.0	43.6 57	7.2 43.5	5 43.1	44.5	48.5
US Highway 101 NB Ramp																																	
Existing (AM)		4	5	12,104	40	75	0	0	1.8%	0.7%	63.8	##### #####		190	75	11	2	16	-											0.6 47.0			
Existing (PM)		4	5	8,328	40	75	0	0	1.8%	0.7%	62.2	##### #####	799	131	52	8	2	11												9.0 45.4			
Existing plus Project (AM)		4	5	12,104	40	75	0	0	1.8%	0.7%	63.8	##### #####		190	75	11	2	16	7	67.4	76.3	31.2 -1	.7 6	3.2 55	.3 56.2	2 64.5	60.2	47.7	16.0 60	0.6 47.0	J 45.9	46.9	51.4
Existing plus Project (PM)		4	5	8,328	40	75	0	0	1.8%	0.7%	62.2	##### #####	, 00	131	52	8	2	11	5	67.4	76.3	31.2 -1	.7 6	1.6 53	.7 54.5	5 62.9	58.6	46.1	14.4 59	9.0 45.4	4 44.2	45.3	49.8
Cumulative (AM)		4	5	14,288	40	75	0	0	1.8%	0.7%	64.5	##### #####		225	89	13	3	19	8						.0 56.9			48.5		1.3 47.7		47.6	52.1
Cumulative (PM)		4	5	10,208	40	75	0	0	1.8%	0.7%	63.0	##### #####	000	161	64	9	2	14	6		76.3									9.9 46.3			
Cumulative plus Project (AM)		4	5	14,288	40	75	0	0	1.8%	0.7%	64.5	#### ####			89	13	3	19												1.3 47.7			
Cumulative plus Project (PM)		4	5	10,208	40	75	0	0	1.8%	0.7%	63.0	##### #####	980	161	64	9	2	14	6	67.4	76.3	31.2 -1	.7 6	2.4 54	.6 55.4	1 63.8	59.5	47.0	45.2 59	9.9 46.3	3 45.1	46.2	50.7

⁽¹⁾ Alpha Factor: Coefficient of absorption relating to the effects of the ground surface. An alpha factor of 0 indicates that the site is an acoustically "hard" site such as aspalt. An alpha factor of 0.5 indicates that the site is an acoustically "soft" site such as vegetative ground cover.

Assumed 24-Hour Traffic Distribution:	Day	Evening	Night
Total ADT Volumes	77.70%	12.70%	9.60%
Medium-Duty Trucks	87.43%	5.05%	7.52%
Heavy-Duty Trucks	89.10%	2 84%	8.06%

Desi	N	1				1	/D	. \	1		1		_	16 D I- 1 I 00	/ - f ADT O!!-	- Ft 40 00°	_		т
	ect Name	-1-11	. \	_			rev. (Da	te)						If Peak Hour = 69					
wee	kday AM/PM Pe	ak Hour	r volume	S										If Peak Hour = 79			ь		
		_												If Peak Hour = 89					
		2												If Peak Hour = 99					
	Rice Avenue and	I US 101	SB Ram	ıp 💮										If Peak Hour = 10	% of ADT, Scal				
																ADT			
						Rice Ave	•							Road		Ave		SB Ramp	
					Southbound									Leg	North of	South of	East of	West of	
						<u>right</u>	through	<u>left</u>						Cross Street	US 101 S	SB Ramp	Rice	e Ave	
					Existing (AM)		1,260	180						Existing (AM)	26,552.0	32,976.0	6,184.0	7,488.0	
					Existing (PM)		1,271	111						Existing (PM)	21,280.0	30,984.0	5,264.0	9,864.0	
					Existing + Project	ct (AM)	1,276	180						Existing + Projec	26,696.0	33,184.0	6,248.0	7,488.0	
					Existing + Project	ct (PM)	1,278	111						Existing + Projec	21,368.0	31,192.0	5,384.0	9,864.0	
					Cumulative (AM)		1,580	190						Cumulative (AM)	37,768.0	48,056.0	8,784.0	9,264.0	
					Cumulative (PM))	1,675	124						Cumulative (PM)	29,800.0	40,016.0	5,888.0	12,968.0	
	Eastbound				Cumulative + Pr	oject (AN	1,596	190	Westbound					Cumulative + Pro	37,912.0	48,264.0	8,848.0	9,264.0	
		<u>left</u>	through	<u>right</u>	Cumulative + Pr	oject (PN	1,682	124		right	through	<u>left</u>		Cumulative + Pro	29,888.0	40,224.0	6,008.0	12,968.0	
ΙĔΙ	Existing (AM) Existing (PM)	227	46	663					Existing (AM)										
8	Existing (PM)	189	39	1,005					Existing (PM)										
1 🔅 🛭	Existing + Project	227	46	663					Existing + Proje										
	Existing + Project	189	39	1,005					Existing + Proje	ct (PM)									
	Cumulative (AM)	245	50	863					Cumulative (AM)									
જ	Cumulative (PM)	376	40	1,205					Cumulative (PM)									
	Cumulative + Pro	245	50	863					Cumulative + Pr	oject (Al	M)								
	Cumulative + Pro	376	40	1205	Northbound				Cumulative + Pr	oject (Pl	M)								
						<u>left</u>	through	right											
					Existing (AM)		1,652	547											
					Existing (PM)		1,089	508											
					Existing + Project	ct (AM)	1,654	555											
					Existing + Project		1,093	523											
					Cumulative (AM))	2,706	858											
					Cumulative (PM)		1,550	572											
					Cumulative + Pr	oject (AN	2708	866											
					Cumulative + Pre	oject (PN	1,554	587											

2 NOI SE LEVEL CONTOURS - Existing Plus Project Weekday Off-Site ADT Volumes

												_ Traffic Volu	imoo							Daf En	erav Le	ıde Die	* 14				Le			Ln			
					Decign	Dist. from		Barrier	Vehic	o Miv		Trainic von	unes							Rei. Eli	ergy Le	veis Dis	i Lu				Le			LII			
ROADWAY NAME			Median	ADT		Center to	ΔInha		Medium		dB(A)	Day Eve	Night I	MT4 F	HTA I	MTo F	ا م⊤⊔	MTn I	HTn .	Δ Ν	ит н	T Adi	Δ	МТ	ΗТ	Total	Λ .	мт н	T Tot	tal A	мт н	HT To	tal
	Land Use	Lanes	Width	Volume		Receptor Fa						Day Lve	INIGHE	viiu i	iiu i	WITE I	1116	IVI I I I		A 11	VII II	i Auj	^	IVI I		TOTAL 7	A 10	VII II	1 100	.ai A	1011 1	11 10	.ca
Rice Ave n/o US Highway 101	Edia 000	Lanco	TTIGUT	VOIGITIO	(11	rtocoptorr	actor ()	uD(/ t)	TTGGTG	Tracito	OHLL																						
Existing (AM)		6	0	26.552	45	75	0	0	1.8%	0.7%	68.6	*******		418	166	24	5	36	15	603	776 8	21 _1	5 68	3 50 7	7 60 2	694	65.3	522 5	50 1 65	5.6 52.1	50.3	510 56	3.0
Existing (PM)		6	0	21,280	45	75	0	0	1.8%	0.7%	67.7	##### #####		335	133	19	4	29												4.7 51.1			
Existing plus Project (AM)		6	0	26,696	45	75	0	0	1.8%	0.7%	68.7	#### ####		420	167	24	5	36										52.2 5				51.0 56	
Existing plus Project (PM)		6	0	21.368	45	75	0	0	1.8%	0.7%	67.7	##### #####		336	133	19	4	29				2.1 -1						51.2 4		4.7 51.2		50.1 55	
Cumulative (AM)		6	0	37.768	45	75	0	0	1.8%	0.7%	70.2	#### ####	#####	594	236	34	8	51												7.2 53.6	51.8	52.5 57	7.5
Cumulative (PM)		6	0	29.800	45	75	0	0	1.8%	0.7%	69.1	#### ####	#####	469	186	27	6	40												6.1 52.6			
Cumulative plus Project (AM)		6	0	37.912	45	75	0	0	1.8%	0.7%	70.2	##### #####	# #####	597	236	34	8	51	21	69.3	77.6 8	2.1 -1	5 69	.8 61.3	3 61.8	3 71.0	66.8	53.7 5	51.6 67	7.2 53.6	51.8	52.6 57	7.5
Cumulative plus Project (PM)		4	0	29,888	45	75	0	0	1.8%	0.7%	68.9	##### #####	#####	470	186	27	6	40	17	69.3	77.6 8	2.1 -1	7 68	.5 60.0	0 60.5	69.7	65.6	52.4 5	50.3 65	5.9 52.4	50.6	51.3 56	3.2
Rice Ave s/o US Highway 101																																	
Existing (AM)		6	0	32,976	45	75	0	0	1.8%	0.7%	69.6	##### #####	#####	519	206	30	7	45	19	69.3	77.6 8	2.1 -1	5 69	.2 60.7	61.2	70.3	66.2	53.1 5	51.0 66	6.6 53.0	51.2	52.0 56	3.9
Existing (PM)		6	0	30,984	45	75	0	0	1.8%	0.7%	69.3	##### #####	#####	488	193	28	6	42	17	69.3	77.6 8	2.1 -1	5 68	.9 60.4	1 60.9	70.1	66.0	52.8 £	50.7 66	6.3 52.8	51.0	51.7 56	3.6
Existing plus Project (AM)		6	0	33,184	45	75	0	0	1.8%	0.7%	69.6	#### ####	#####	522	207	30	7	45	19	69.3	77.6 8	2.1 -1	5 69	.2 60.7	61.2	70.4	66.3	53.1 5	51.0 66	6.6 53.1	51.3	52.0 56	3.9
Existing plus Project (PM)		6	0	31,192	45	75	0	0	1.8%	0.7%	69.3	##### #####	#####	491	195	28	6	42	18	69.3	77.6 8	2.1 -1	5 69	.0 60.4	4 60.9	70.1	66.0	52.9 5	50.8 66	6.3 52.8	51.0	51.7 56	3.7
Cumulative (AM)		6	0	48,056	45	75	0	0	1.8%	0.7%	71.2	##### #####	#####	756	300	44	10	65	27	69.3	77.6 8	2.1 -1	5 70	.9 62.3	3 62.8	72.0	67.9	54.7 5	52.7 68	8.2 54.7	52.9	53.6 58	3.5
Cumulative (PM)		6	0	40,016	45	75	0	0	1.8%	0.7%	70.4	##### #####	# #####	630	250	36	8	54	23	69.3	77.6 8	2.1 -1	5 70	.1 61.5	i 62.0	71.2	67.1	53.9 5	51.9 67	7.4 53.9	52.1	52.8 57	7.8
Cumulative plus Project (AM)		6	0	48,264	45	75	0	0	1.8%	0.7%	71.2	##### #####	# #####	760	301	44	10	65	27	69.3	77.6 8	2.1 -1	5 70	.9 62.3	3 62.8	72.0	67.9	54.8 5	52.7 68	8.2 54.7	52.9	53.6 58	3.6
Cumulative plus Project (PM)		6	0	40,224	45	75	0	0	1.8%	0.7%	70.4	##### #####	# #####	633	251	37	8	54	23	69.3	77.6 8	2.1 -1	5 70	.1 61.5	62.0 ذ	71.2	67.1	54.0 5	51.9 67	7.4 53.9	52.1	52.8 57	7.8
US Highway 101 SB Ramp																																	
Existing (AM)		2	0	6,184	40	75	0	0	1.8%	0.7%	60.7	#### 785		97	39	6	1	8	3											7.5 43.9		43.8 48	3.3
Existing (PM)		2	0	5,264	40	75	0	0	1.8%	0.7%	60.0	#### 669		83	33	5	1	7	3	67.4	76.3 8	1.2 -1								6.8 43.2		43.1 47	
Existing plus Project (AM)		2	0	6,248	40	75	0	0	1.8%	0.7%	60.8	#### 793		98	39	6	1	8			76.3 8									7.6 44.0	42.8	43.9 48	3.4
Existing plus Project (PM)		2	0	5,384	40	75	0	0	1.8%	0.7%	60.1	#### 684		85	34	5	1	7	-		76.3 8							44.1 4		6.9 43.3		43.2 47	
Cumulative (AM)		2	0	8,784	40	75	0	0	1.8%	0.7%	62.2	##### #####	0.0	138	55	8	2	12												9.0 45.5			
Cumulative (PM)		2	0	5,888	40	75	0	0	1.8%	0.7%	60.5	#### 748		93	37	5	1	8												7.3 43.7			
Cumulative plus Project (AM)		2	0	8,848	40	75	0	0	1.8%	0.7%	62.3	##### #####		139	55	8	2	12												9.1 45.5			
Cumulative plus Project (PM)		2	0	6,008	40	75	0	0	1.8%	0.7%	60.6	#### 763	577	95	37	5	1	8	3	67.4	76.3 8	1.2 -1	8 60	.0 52.1	53.0	61.3	57.0	44.5 4	12.8 57	7.4 43.8	42.7	43.7 48	3.2
US Highway 101 SB Ramp																																	
Existing (AM)		2	0	7,488	40	75	0	0	1.8%	0.7%	61.5	#### 951	719	118	47	7	1	10												8.4 44.8		44.7 49	
Existing (PM)		2	0	9,864	40	75	0	0	1.8%	0.7%	62.7	##### #####		155	62	9	2	13												9.6 46.0		45.9 50	
Existing plus Project (AM)		2	0	7,488	40	75	0	0	1.8%	0.7%	61.5	#### 951		118	47	7	1	10												8.4 44.8			
Existing plus Project (PM)		2	0	9,864	40	75	0	0	1.8%	0.7%	62.7	##### #####		155	62	9	2	13	-									46.7 4		9.6 46.0		45.9 50	
Cumulative (AM)		2	0	9,264	40	75	0	0	1.8%	0.7%	62.5	##### #####	000	146	58	8	2	13	-		76.3 8			.9 54.0			58.9		14.7 59			45.6 50	
Cumulative (PM)		2	0	12,968	40	75	0	0	1.8%	0.7%	63.9	##### #####	mmm	204	81	12	3	18			76.3 8					64.7		47.9 4				47.1 51	
Cumulative plus Project (AM)		2	0	9,264	40	75	0	0	1.8%	0.7%	62.5	##### #####	000	146	58	8	2	13	-											9.3 45.7		45.6 50	
Cumulative plus Project (PM)		2	0	12,968	40	75	0	0	1.8%	0.7%	63.9	##### #####	######	204	81	12	3	18	7	67.4	76.3 8	1.2 -1	B 63	.3 55.5	56.3	64.7	60.3	47.9 4	16.1 60	0.7 47.2	46.0	47.1 51	1.5

⁽¹⁾ Alpha Factor: Coefficient of absorption relating to the effects of the ground surface. An alpha factor of 0 indicates that the site is an acoustically "hard" site such as aspalt. An alpha factor of 0.5 indicates that the site is an acoustically "soft" site such as vegetative ground cover.

Assumed 24-Hour Traffic Distribution:	Day	Evening	Night
Total ADT Volumes	77.70%	12.70%	9.60%
Medium-Duty Trucks	87.43%	5.05%	7.52%
Heavy-Duty Trucks	89 10%	2 84%	8.06%

Droi	ect Name		1				rev. (Da	40)	1	1	1		If Peak Hour = 69	/ of ADT Coolin	a Footor - 16 66	7	T	
	kday AM/PM Pe	ak Harr	- Values				rev. (Da	ie)					If Peak Hour = 79					
vvee	Kuay AM/PM Pe	ak noui	r volume	35												0		
	lasta and a still a sec	1							_				If Peak Hour = 89	6 Of ADT, Scalin	g Factor = 12.5	•		
		3	l D d										If Peak Hour = 99	6 OT ADT, Scalin	ig Factor = 11.11	I		
	Rice Avenue and	Gonzai	ies Road										If Peak Hour = 10	1% of ADI, Scall	ADT			
																		4
						Rice Ave	8						Road	Rice			es Road	
					Southbound								Leg	North of	South of	East of	West of	
						<u>right</u>	through	<u>left</u>					Cross Street	Gonzale			Ave	
					Existing (AM)	660	1,215						Existing (AM)	32,816.0	25,832.0	0.0	17,160.0	
					Existing (PM)	807	1,465						Existing (PM)	30,944.0	24,200.0	0.0	14,520.0	
					Existing + Project	676	1,215						Existing + Projec	33,024.0	25,872.0	0.0	17,408.0	
					Existing + Project	814	1,465						Existing + Projec	31,152.0	24,240.0	0.0	14,768.0	
					Cumulative (AM)	691	1,729	190					Cumulative (AM)	50,056.0	43,592.0	25,400.0	31,656.0	
					Cumulative (PM)	876	2,066	190					Cumulative (PM)	42,064.0	36,544.0	17,400.0	27,896.0	
	Eastbound				Cumulative + Pro	707	1,729	190	Westbound				Cumulative + Pro	50,264.0	43,632.0	25,400.0	31,904.0	
1_1			through	<u>right</u>	Cumulative + Pro	883	2,066	190		right	through	<u>left</u>	Cumulative + Pro	42,272.0	36,584.0	17,400.0	28,144.0	
ad	Existing (AM) Existing (PM)	849		305					Existing (AM)									
&	Existing (PM)	522		265					Existing (PM)									
8	Existing + Project Existing + Project Cumulative (AM)	859		307					Existing + Project									
g	Existing + Projed	541		269					Existing + Project									
1 🖺	Cumulative (AM)	904	570	327					Cumulative (AM		1,095	710						
	Cumulative (PM)	540	1,075	504					Cumulative (PM		250	10						
	Cumulative + Pro		570	329					Cumulative + Pr		1,095	710						
	Cumulative + Pro	559	1075	508	Northbound				Cumulative + Pr	245	250	10						
							through	<u>right</u>										
					Existing (AM)	331	1,378											
					Existing (PM)	221	1,074											
					Existing + Project	334	1,378											
					Existing + Project	222	1,074											
					Cumulative (AM)	370	2,223	90										
					Cumulative (PM)	242	1,341	405										
					Cumulative + Pro	373	2223	90										
					Cumulative + Pro	243	1,341	405										

2
NOISE LEVEL CONTOURS - Existing Plus Project Weekday Off-Site ADT Volumes

												Traffic Vo	olumes						R	Ref. Ene	rgy Le	el Dis	t Ld				_е		l l	Ln		
					Design D	Dist. from		Barrier	Vehic	e Mix																						
ROADWAY NAME			Median	ADT	Speed 0	Center to .	Alpha	Attn.	Medium	Heavy	dB(A)	Day Eve	Night	MTd	HTd I	MTe H	HTe N	MTn H	ITn A	. M	т нт	Ad	i A	MT	HT	Total /	A MT	HT	Total A	A M	т нт	T Total
Segment	Land Use L	Lanes	Width	Volume	(mph) F	Receptor Fa	actor (1	dB(A)	Trucks	Trucks	CNEL																					
Rice Ave n/o Gonzales Road																																
Existing (AM)		6	0	32,816	45	75	0	0	1.8%	0.7%	69.5	#### ###	## ####	516	205	30	7	44	19 6	39.3 7	7.6 82	.1 -1	.5 69	2 60.	7 61.2	70.3	66.2 53.	1 51.0	66.5	53.0 5	1.2 51	1.9 56.9
Existing (PM)		6	0	30,944	45	75	0	0	1.8%	0.7%	69.3	##### ###	+# ####	487	193	28	6	42	17 €	39.3 7	7.6 82	.1 -1	.5 68	.9 60.	4 60.9	70.1	66.0 52	8 50.7	66.3	52.8 5	1.0 51	1.7 56.6
Existing plus Project (AM)		6	0	33,024	45	75	0	0	1.8%	0.7%	69.6	##### ###	¥# ####	520	206	30	7	45	19 €	39.3 7	7.6 82	.1 -1	.5 69	.2 60.	7 61.2	70.4	66.2 53.	1 51.0	66.6	53.1 5	1.2 52	2.0 56.9
Existing plus Project (PM)		6	0	31,152	45	75	0	0	1.8%	0.7%	69.3	#### ###	*** ******	490	194	28	6	42	18 6	39.3 7	7.6 82	.1 -1	.5 69	.0 60.	4 60.9	70.1	66.0 52.5	9 50.8	66.3	52.8 5	1.0 51	1.7 56.7
Cumulative (AM)		6	0	50,056	45	75	0	0	1.8%	0.7%	71.4	#### ###	¥# ####	788	312	46	10	68	28 €	39.3 7	7.6 82	.1 -1	.5 71	.0 62.	5 63.0	72.2	68.1 54.5	9 52.8	68.4	54.9 5	3.0 53	3.8 58.7
Cumulative (PM)		6	0	42,064	45	75	0	0	1.8%	0.7%	70.6	##### ###	¥# ####	662	262	38	8	57	24 €	39.3 7	7.6 82	.1 -1	.5 70	.3 61.	7 62.2	71.4	67.3 54.	2 52.1	67.6	54.1 5	2.3 53	3.0 58.0
Cumulative plus Project (AM)		6	0	50,264	45	75	0	0	1.8%	0.7%	71.4	##### ###	## ####	791	313	46	10	68	28 €	39.3 7	7.6 82	.1 -1	.5 7	.0 62.	5 63.0	72.2	68.1 54.	9 52.9	68.4	54.9 5	3.1 53	3.8 58.7
Cumulative plus Project (PM)		6	0	42,272	45	75	0	0	1.8%	0.7%	70.6	##### ###	## ####	665	264	38	8	57	24 €	39.3 7	7.6 82	.1 -1	.5 70	.3 61.	8 62.3	71.4	67.3 54.	2 52.1	67.6	54.1 5	2.3 53	3.0 58.0
Rice Ave s/o Gonzales Road																																
Existing (AM)		6	0	25,832	45	75	0	0	1.8%	0.7%	68.5	##### ###	## #####	407	161	23	5	35	15 €	39.3 7	7.6 82	.1 -1	.5 68	2 59.	6 60.1	69.3	65.2 52.	.0 50.0	65.5	52.0 5/	0.2 50).9 55.9
Existing (PM)		6	0	24,200	45	75	0	0	1.8%	0.7%	68.2	##### ###			151	22	5	33									64.9 51.					
Existing plus Project (AM)		6	0	25,872	45	75	0	0	1.8%	0.7%	68.5	##### ###	¥# ####	407	161	24	5	35	15 €	39.3 7	7.6 82	.1 -1	.5 68	.2 59.	6 60.1	69.3	65.2 52.	.0 50.0	65.5	52.0 5/	0.2 50	J.9 55.9
Existing plus Project (PM)		6	0	24,240	45	75	0	0	1.8%	0.7%	68.2	##### ###	## ####	381	151	22	5	33	14 €	39.3 7	7.6 82	.1 -1	.5 67	.9 59.	3 59.8	69.0	64.9 51.	8 49.7	65.2	51.7 49	9.9 50).6 55.6
Cumulative (AM)		6	0	43,592	45	75	0	0	1.8%	0.7%	70.8	#### ###			272	40	9										67.5 54.					
Cumulative (PM)		6	0	36,544	45	75	0	0	1.8%	0.7%	70.0	##### ###			228	33	7			39.3 7							66.7 53.					
Cumulative plus Project (AM)		6	0	43,632	45	75	0	0	1.8%	0.7%		##### ###			272	40	9										67.5 54.					
Cumulative plus Project (PM)		6	0	36,584	45	75	0	0	1.8%	0.7%	70.0	##### ###	## ####	576	228	33	7	50	21 6	39.3 7	7.6 82	.1 -1	.5 69	.7 61.	1 61.6	70.8	66.7 53.	6 51.5	67.0	53.5 5	1.7 52	2.4 57.4
Gonzales Road e/o Rice Ave																																
Existing (AM)		4	0	0	40	75	0	0	1.8%	0.7%	#NUM!	0 0	0	0	0	0	0	0	0 6								##### ####				### ##	;## ####
Existing (PM)		4	0	0	40	75	0	0	1.8%	0.7%	#NUM!		0	0	0	0	0	0									#### ###			#### ##	### ##	### #####
Existing plus Project (AM)		4	0	0	40	75	0	0	1.8%	0.7%	#NUM!	0 0	0	0	0	0	0	0	0 6		6.3 81						#### ###			#### ##	### ##	### #####
Existing plus Project (PM)		4	0	0	40	75	0	0	1.8%	0.7%	#NUM!	0 0		0	0	0	0	0			6.3 81						##### ####					;## ####
Cumulative (AM)		4	0	25,400	40	75	0	0	1.8%	0.7%	67.0	#### ###		400	158	23	5										63.4 50.					0.1 54.6
Cumulative (PM)		4	0	17,400	40	75	0	0	1.8%	0.7%		##### ###		2	109	16											61.7 49.					
Cumulative plus Project (AM)		4	0	25,400	40	75	0	0	1.8%	0.7%		##### ###	*** *******	400	158	23											63.4 50.					
Cumulative plus Project (PM)		4	0	17,400	40	75	0	0	1.8%	0.7%	65.3	#### ###	## ####	274	109	16	3	24	10 €	37.4 7	6.3 81	.2 -1	.7 64	.7 56.	9 57.7	66.1	61.7 49.	.3 47.5	62.1	48.5 4	7.4 48	3.5 52.9
Gonzales Road w/o Rice Ave																																
Existing (AM)		6	5	17,160	40	75	0	0	1.8%	0.7%	65.6	#### ###		2.0	107	16	3										62.0 49.					
Existing (PM)		6	5	14,520	40	75	0	0	1.8%	0.7%	64.9	##### ###		229	91	13	3										61.3 48.					8.0 52.5
Existing plus Project (AM)		6	5	17,408	40	75	0	0	1.8%	0.7%	65.6	##### ###			109	16	3										62.1 49.					
Existing plus Project (PM)		6	5	14,768	40	75	0	0	1.8%	0.7%	64.9	#### ###	*** *******	LUL	92	13	3	20									61.4 48.					
Cumulative (AM)		6	5	31,656	40	75	0	0	1.8%	0.7%		#### ###			197	29	6										64.7 52.					
Cumulative (PM)		6	5	27,896	40	75	0	0	1.8%	0.7%		#### ###			1/4	25	б										64.1 51.					
Cumulative plus Project (AM)		6	5	31,904	40	75	0	0	1.8%	0.7%		##### ###			199	29	6										64.7 52.					
Cumulative plus Project (PM) (1) Alpha Factor: Coefficient of	abountion relating to the effect	tion of the	5	28,144	40 alaba fas	75 tor of 0 in	0	0 that the	1.8%	0.7%	67.7	##### ###	*** #####	443	176	26	6	38	16 6	57.4 7	6.3 81	.2 -1	.4 67	.1 59.	3 60.1	68.5	64.2 51.	./ 49.9	64.5	51.0 49	J.8 50	1.9 55.3

[Cumilative plus Project (PM)]
(7) Aprils Factor, Coefficient of absorption relating to the effects of the ground surface. An alpha factor of 0 indicates that the site is a accustically "hard" site such as aspait. An alpha factor of 0.5 indicates that the site is an accustically "soft" site such as vegetative ground cover.

Assumed 24-Hour Traffic Distribution: Total ADT Volumes Medium-Duty Trucks Heavy-Duty Trucks Day Evening Night 77.70% 12.70% 9.60% 87.43% 5.05% 7.52% 89.10% 2.84% 8.06%

Desi	aat Nama		- 1		1		I /D-	4-1			г т		If Dook Hour - 60	/ of ADT Coolin	- Fastar - 16 66°	,	T	т
	ect Name	als Hacco	Maluri	_			rev. (Da	ite)		-			If Peak Hour = 69					
vvee	kday AM/PM Pe	ak Hour	volume	98									If Peak Hour = 79			0		
													If Peak Hour = 89					
		4											If Peak Hour = 99			1		
	Rose Ave and U	S 101 NE	Ramps										If Peak Hour = 10	% of ADT, Scali				
															ADT			
						Rose Av	е						Road	Rose			NB Ramps	
					Southbound								Leg	North of	South of	East of	West of	
						<u>right</u>	through	left					Cross Street	US 101 N	B Ramps	Ros	e Ave	
					Existing (AM)		1,177						Existing (AM)	20,792.0	22,264.0	3,488.0	0.0	
					Existing (PM)		1,086						Existing (PM)	19,128.0	21,088.0	3,448.0	0.0	
					Existing + Project	ct (AM)	1,180						Existing + Projec	20,832.0	22,304.0	3,488.0	0.0	
					Existing + Project	ct (PM)	1,087						Existing + Projec	19,168.0	21,128.0	3,448.0	0.0	
					Cumulative (AM))	1,388						Cumulative (AM)	24,088.0	25,800.0	4,528.0	0.0	
					Cumulative (PM))	1,237						Cumulative (PM)	21,944.0	24,024.0	4,368.0	0.0	
	Eastbound				Cumulative + Pro	oject (AN	1,391		Westbound				Cumulative + Pro	24,128.0	25,840.0	4,528.0	0.0	
S		<u>left</u>	through	right	Cumulative + Pro	oject (PN	1,238			<u>right</u>	through	<u>left</u>	Cumulative + Pro	21,984.0	24,064.0	4,368.0	0.0	
Ramps	Existing (AM)								Existing (AM)	126		310						
ାଞ୍ଜା	Existing (PM)								Existing (PM)	93		338						
æ	Existing + Projec	t (AM)							Existing + Project			310						
Z	Existing + Project	t (PM)							Existing + Project	93		338						
5	Cumulative (AM))							Cumulative (AM)	176		390						
SN	Cumulative (PM))							Cumulative (PM)	143		403						
>	Cumulative + Pro	oject (AM	l)						Cumulative + Pr	176		390						
	Cumulative + Pro	oject (PM	l)		Northbound				Cumulative + Pr	143		403						
						<u>left</u>	through	right										
					Existing (AM)		1,296											
					Existing (PM)		1,212											
					Existing + Project	ct (AM)	1,298											
					Existing + Project		1,216											
					Cumulative (AM))	1,447											
					Cumulative (PM)		1,363											
					Cumulative + Pro	oject (AN	1449											
					Cumulative + Pro	oject (PN	1,367											

2 NOI SE LEVEL CONTOURS - Existing Plus Project Weekday Off-Site ADT Volumes

•												Traffic Vo	lumes							Ref. E	nergy L	.evels D	ist L	d			Le	ı		L	.n		
					Design	Dist. from	1	Barrier	Vehic	leMix																							
ROADWAY NAME			Median	ADT		Center to			Medium			Day Eve	Night	MTd	HTd	MTe I	НТе	MTn I	HTn .	Α	MT I	HT A	.dj A	. 1	MT H	T To	otal A	MT	HT	Total A	M A	т нт	Total
	Land Use	Lanes	Width	Volume	(mph)	Receptor	Factor (1	dB(A)	Trucks	Trucks	CNEL	_																					
Rose Ave n/o US Highway																																	
Existing (AM)		6	0	20,792	40	75	0	0	1.8%	0.7%	66.3	##### ###	# ####	327	130	19	4	28	12	67.4	76.3	81.2 -	1.5	65.7	57.9 5	8.7	37.1 67	2.8 50	.3 48.5	5 63.2 4	49.6 4	18.4 49	1.5 54.0
Existing (PM)		6	0	19,128	40	75	0	0	1.8%	0.7%	66.0	##### ####	# ####	301	119	17	4	26	11	67.4	76.3	81.2 -	1.5	65.4	57.5 5	8.4 6	36.7 67	2.4 49	.9 48.2	2 62.8 4	49.2 4	18.1 49	9.1 53.6
Existing plus Project (AM)		6	0	20,832	40	75	0	0	1.8%	0.7%	66.3	##### ####	# ####	328	130	19	4	28	12		76.3									6 63.2			9.5 54.0
Existing plus Project (PM)		6	0	19,168	40	75	0	0	1.8%	0.7%	66.0	##### ####	# ####	302	120	17	4	26	11	67.4	76.3	81.2	1.5	65.4	57.5 5	8.4	36.7 62	2.4 49	.9 48.2	2 62.8 4	49.2 4	18.1 49	9.1 53.6
Cumulative (AM)		6	0	24,088	40	75	0	0	1.8%	0.7%	67.0	#### ###	# ####	379	150	22	5	33	14	67.4	76.3	81.2 -	1.5	66.4	58.5 5	9.4 6	37.7 6	3.4 50	.9 49.2	2 63.8 5	50.2 4	19.1 50	0.1 54.6
Cumulative (PM)		6	0	21,944	40	75	0	0	1.8%	0.7%	66.6	##### ####	# ####	345	137	20	4	30	12	67.4	76.3	81.2 -	1.5	66.0	58.1 5	8.9	37.3 6	3.0 50	.5 48.8	8 63.4 4	49.8 4	18.7 49	1.7 54.2
Cumulative plus Project (AM)		6	0	24,128	40	75	0	0	1.8%	0.7%	67.0	##### ###	# ####	380	150	22	5	33	14	67.4	76.3	81.2	1.5	66.4	58.5 5	9.4	37.7 6	3.4 50	.9 49.2	2 63.8 5	50.2 4	19.1 50	0.1 54.6
Cumulative plus Project (PM)		6	0	21,984	40	75	0	0	1.8%	0.7%	66.6	##### ###	# ####	346	137	20	4	30	12	67.4	76.3	81.2 -	1.5	66.0	58.1 5	9.0 6	37.3 6	3.0 50	.5 48.8	8 63.4 4	49.8 4	18.7 49	.7 54.2
Rose Ave s/o US Highway 101																																	
Existing (AM)		6	0	22,264	40	75	0	0	1.8%	0.7%	66.6	##### ####	# ####	350	139	20	4	30												8 63.5 4			
Existing (PM)		6	0	21,088	40	75	0	0	1.8%	0.7%	66.4	##### ####	# ####	332	132	19	4	29												6 63.2			
Existing plus Project (AM)		6	0	22,304	40	75	0	0	1.8%	0.7%	66.6	##### ###	# ####	351	139	20	4	30												9 63.5 4			
Existing plus Project (PM)		6	0	21,128	40	75	0	0	1.8%	0.7%	66.4	##### ####	# ####	332	132	19	4	29	12	67.4	76.3	81.2	1.5	65.8	58.0 5	8.8	37.2 62	2.8 50	.4 48.6	63.2	49.6 4	18.5 49	.5 54.0
Cumulative (AM)		6	0	25,800	40	75	0	0	1.8%	0.7%	67.3	##### ####	# ####	406	161	23	5	35	15	67.4	76.3	81.2							1.2 49.5				0.4 54.9
Cumulative (PM)		6	0	24,024	40	75	0	0	1.8%	0.7%	67.0	##### ####	# ####	378	150	22	5	33	14	67.4	76.3	81.2	1.5	66.4	58.5 5	9.3 6	37.7 6	3.4 50	.9 49.2	2 63.8	50.2 4	19.1 50	0.1 54.6
Cumulative plus Project (AM)		6	0	25,840	40	75	0	0	1.8%	0.7%	67.3	##### ###	# ####	407	161	23	5	35												5 64.1 5			0.4 54.9
Cumulative plus Project (PM)		6	0	24,064	40	75	0	0	1.8%	0.7%	67.0	##### ###	# ####	379	150	22	5	33	14	67.4	76.3	81.2 -	1.5	66.4	58.5 5	9.3 6	37.7 6	3.4 50	.9 49.2	2 63.8 5	50.2 4	19.1 50	0.1 54.6
US Highway 101 NB Ramp																																	
Existing (AM)		2	0	3,488	40	75	0	0	1.8%	0.7%	58.2	#### 443	335	55	22	3	1	5	2	67.4	76.3	81.2	1.8	57.6	49.8 5	0.6 5	59.0 54	4.6 42	2 40.4	4 55.0 4	41.4 4	10.3 41	.4 45.8
Existing (PM)		2	0	3,448	40	75	0	0	1.8%	0.7%	58.2	#### 43	331	54	22	3	1	5	2	67.4	76.3	81.2	1.8	57.6	49.7 5	0.5 5	58.9 54	4.6 42	1 40.4	4 55.0 4	41.4 4	10.3 41	1.3 45.8
Existing plus Project (AM)		2	0	3,488	40	75	0	0	1.8%	0.7%	58.2	#### 44		55	22	3	1	5	2	67.4	76.3	81.2	1.8	57.6	49.8 5	0.6 5	59.0 54	4.6 42	2 40.4	4 55.0 4	41.4 4	10.3 41	1.4 45.8
Existing plus Project (PM)		2	0	3,448	40	75	0	0	1.8%	0.7%	58.2	#### 43		54	22	3	1	5												4 55.0 4			
Cumulative (AM)		2	0	4,528	40	75	0	0	1.8%	0.7%	59.4	#### 57		71	28	4	1	6												6 56.2			
Cumulative (PM)		2	0	4,368	40	75	0	0	1.8%	0.7%	59.2	#### 55	5 419	69	27	4	1	6												4 56.0 4			
Cumulative plus Project (AM)		2	0	4,528	40	75	0	0	1.8%	0.7%	59.4	#### 57	435	71	28	4	1	6	3	67.4	76.3	81.2	1.8	58.8	50.9 5	1.7 6	30.1 5£	5.8 43	.3 41.6	6 56.2	42.6 4	11.4 42	.5 47.0
Cumulative plus Project (PM)		2	0	4,368	40	75	0	0	1.8%	0.7%	59.2	#### 55	5 419	69	27	4	1	6	2	67.4	76.3	81.2 -	1.8	58.6	50.7 5	1.6 5	59.9 5f	5.6 43	.2 41.4	4 56.0 4	42.4 4	11.3 42	3 46.8
US Highway 101 NB Ramp																																	
Existing (AM)		2	0	0	40	75	0	0	1.8%	0.7%	#NUM!	0 0	0	0	0	0	0	0	0	67.4	76.3	81.2 -	1.8 #	#### 1	##### ##	### #	### ##	### ###	## ####	<i>! #### #</i>	#### ##	### ##	## #####
Existing (PM)		2	0	0	40	75	0	0	1.8%	0.7%	#NUM!	0 0	0	0	0	0	0	0	0	67.4	76.3	81.2	1.8 #	#### 1	##### ##	### #	### ##	### ###	## ####	‡ ##### #	#### ##	### ##	## ####
Existing plus Project (AM)		2	0	0	40	75	0	0	1.8%	0.7%	#NUM!	0 0	0	0	0	0	0	0	0	67.4	76.3	81.2 -	1.8 #	#### 3	##### ##	## #	### ##	## ##	## ####	<i>! #### #</i>	#### ##	### ##	## ####
Existing plus Project (PM)		2	0	0	40	75	0	0	1.8%	0.7%	#NUM!	0 0	0	0	0	0	0	0	0	67.4	76.3	81.2	1.8 #	#### 3	##### ##	### ##	### ##	### ###	## ####	‡ ##### #	#### ##	### ##	## ####
Cumulative (AM)		2	0	0	40	75	0	0	1.8%	0.7%	#NUM!	0 0	0	0	0	0	0	0	0	67.4	76.3	81.2	1.8 #	#### 1	##### ##	### ##	### ##	## ##	## ####	<i>‡ ##### #</i>	### ##	### ##	## #####
Cumulative (PM)		2	0	0	40	75	0	0	1.8%	0.7%	#NUM!	0 0	0	0	0	0	0	0	0	67.4	76.3	81.2	1.8 #	#### 1	##### ##	### ##	### ##	## ##	## ####	<i>‡ ##### #</i>	### ##	### ##	## ####
Cumulative plus Project (AM)		2	0	0	40	75	0	0	1.8%	0.7%	#NUM!	0 0	0	0	0	0	0	0	-		76.3		1.8 #			### #	### ##	## ##	## ####	<i>‡ ##### #</i>	#### ##	### ##	## ####
Cumulative plus Project (PM)		2	0	0	40	75	0	0	1.8%	0.7%	#NUM!	0 0	0	0	0	0	0	0	0	67.4	76.3	81.2	1.8 #	#### 1	##### ##	## #	#### ##	## ###	# ###	<i>! #### #</i>	### ##	### ##	## #####

⁽¹⁾ Alpha Factor: Coefficient of absorption relating to the effects of the ground surface. An alpha factor of 0 indicates that the site is an acoustically "hard" site such as aspalt. An alpha factor of 0.5 indicates that the site is an acoustically "soft" site such as vegetative ground cover.

Assumed 24-Hour Traffic Distribution:	Day	Evening	Night
Total ADT Volumes	77.70%	12.70%	9.60%
Medium-Duty Trucks	87.43%	5.05%	7.52%
Heavy-Duty Trucks	89.10%	2 84%	8.06%

Ductost Name			1				I /D-	4-1	1	т —	1		If Dook Hour - 60	/ of ADT Coolin	- Fastar - 16 66	,		т —
Project Nam		ale I Iarra	. Values		+		rev. (Da	ite)	+	<u> </u>			If Peak Hour = 69					
Weekday AM	M/PM Pea	ak mour	volume	# 5			-			1			If Peak Hour = 79			•		
		_											If Peak Hour = 89	6 OT ADT, Scalin	ig ractor = 12.5			
Intersect													If Peak Hour = 99	6 of ADT, Scalin	ig Factor = 11.11			
Rose Av	e and US	101 SE	3 Ramps										If Peak Hour = 10	% of ADT, Scal				
															ADT			
						Rose Av	е						Road	Rose			NB Ramps	
					Southbound								Leg	North of	South of	East of	West of	
						<u>right</u>	through	<u>left</u>					Cross Street	US 101 N	B Ramps	Rose	e Ave	1
					Existing (AM)		1,382						Existing (AM)	27,920.0	31,872.0	0.0	9,120.0]
					Existing (PM)		1,258						Existing (PM)	25,768.0	28,576.0	0.0	6,360.0	
					Existing + Project	ct (AM)	1,385						Existing + Projec	27,944.0	32,000.0	0.0	9,224.0	
					Existing + Project	ct (PM)	1,259						Existing + Projec	25,776.0	28,616.0	0.0	6,392.0	
					Cumulative (AM)		1,432						Cumulative (AM)	30,320.0	34,552.0	0.0	10,200.0	
					Cumulative (PM))	1,308						Cumulative (PM)	27,968.0	30,912.0	0.0	7,296.0	
Eastbour	nd				Cumulative + Pr		1,435		Westbound				Cumulative + Pro	30,344.0	34,680.0	0.0	10,304.0	
တ		<u>left</u>	through	right	Cumulative + Pr	oject (PN	1,309			right	through	<u>left</u>	Cumulative + Pro	27,976.0	30,952.0	0.0	7,328.0	
Existing Existing	(AM)	323		817					Existing (AM)									1
Existing	(PM)	222		573					Existing (PM)									
Existing Existing	+ Projec	323		830					Existing + Proje	ct (AM)								
Z Existing	+ Projec	222		577					Existing + Proje	ct (PM)								
Cumulati	ive (AM)	373		902					Cumulative (AM)								
Cumulati	ive (PM)	272		640					Cumulative (PM)								
Cumulati	ive + Pro	373		915					Cumulative + Pr	oject (Al	M)							
Cumulat	ive + Pro	272		644	Northbound				Cumulative + Pr	oject (Pl	VI)							
						<u>left</u>	through	right										
					Existing (AM)		1,785											
					Existing (PM)		1,741											
					Existing + Project	ct (AM)	1,785											
					Existing + Project		1,741											
					Cumulative (AM)		1,985											
					Cumulative (PM)		1,916											
					Cumulative + Pr													1
					Cumulative + Pr													1
																		1
																		†

2 NOI SE LEVEL CONTOURS - Existing Plus Project Weekday Off-Site ADT Volumes

-												Traffic Vol	umes							Ref. E	nergy L	evels D	ist L	d			Le			L	_n		
					Design	Dist. from	า	Barrier	Vehic	le Mix																							
ROADWAY NAME			Median	ADT	Speed	Center to	Alpha	Attn.	Medium	Heavy	dB(A)	Day Eve	Night	MTd	HTd I	MTe F	-ITe	MTn	HTn	Α	MT	HT A	dj A	. N	т нт	Tc	otal A	MT	HT	Total A	A M	т нт	Total
	Land Use	Lanes	Width	Volume	(mph)	Receptor	Factor (1	dB(A)	Trucks	Trucks	CNEL	_																					
Rose Ave n/o US Highway																																	
Existing (AM)		6	0	27,920	40	75	0	0	1.8%	0.7%	67.6	##### ####	#####	439	174	25	6	38	16	67.4	76.3	81.2 -	1.5	67.0	59.2 60	J.0 6	38.4 64	4.0 51	.6 49.8	64.4	50.8 4	9.7 50	.8 55.2
Existing (PM)		6	0	25,768	40	75	0	0	1.8%	0.7%	67.3	##### ####	#####	406	161	23	5	35	15	67.4	76.3	81.2 -	1.5	66.7	58.8 59	∂.6 6°	38.0 63	3.7 51	.2 49.5	5 64.1	50.5 4	9.4 50	.4 54.9
Existing plus Project (AM)		6	0	27,944	40	75	0	0	1.8%	0.7%	67.6	##### ####	# #####	440	174	25	6	38	16	67.4	76.3	81.2 -	1.5	67.0	59.2 60	J.0 6	38.4 64	4.0 51	.6 49.8	64.4	50.9 4	9.7 50	.8 55.2
Existing plus Project (PM)		6	0	25,776	40	75	0	0	1.8%	0.7%	67.3	##### ####	# #####	406	161	23	5	35											.2 49.5				.4 54.9
Cumulative (AM)		6	0	30,320	40	75	0	0	1.8%	0.7%	68.0	##### ####	# #####	477	189	28	6	41	17	67.4	76.3	81.2 -	1.5	37.4	59.5 60	J.4 6	38.7 64	4.4 51	.9 50.2	2 64.8	51.2 5	0.1 51	.1 55.6
Cumulative (PM)		6	0	27,968	40	75	0	0	1.8%	0.7%	67.6	##### ####	#####	440	174	25	6	38	16	67.4	76.3	81.2 -	1.5	37.0	59.2 60	J.0 6	38.4 64	1.1 51	.6 49.8	64.4	50.9 4	9.7 50	.8 55.2
Cumulative plus Project (AM)		6	0	30,344	40	75	0	0	1.8%	0.7%	68.0	##### ####	# #####	478	189	28	6	41	17	67.4	76.3	81.2 -	1.5	67.4	59.5 60	J.4 6	38.7 64	4.4 51	.9 50.2	2 64.8	51.2 5	0.1 51	.1 55.6
Cumulative plus Project (PM)		6	0	27,976	40	75	0	0	1.8%	0.7%	67.6	##### ####	# #####	440	174	25	6	38	16	67.4	76.3	81.2 -	1.5	37.0	59.2 60	J.0 6	38.4 64	¥.1 51	.6 49.8	64.4	50.9 4	9.7 50	.8 55.2
Rose Ave s/o US Highway 101																																	
Existing (AM)		6	0	31,872	40	75	0	0	1.8%	0.7%	68.2	##### ####	#####	502	199	29	6	43	18	67.4	76.3	81.2 -	1.5	37.6	59.7 60	J.6 6	38.9 64	1.6 52	2 50.4	4 65.0	51.4 5	0.3 51	.3 55.8
Existing (PM)		6	0	28,576	40	75	0	0	1.8%	0.7%	67.7	##### ####	# #####	450	178	26	6	39												64.5			
Existing plus Project (AM)		6	0	32,000	40	75	0	0	1.8%	0.7%	68.2	##### ####	# #####	504	200	29	6	43	18	67.4	76.3	81.2 -	1.5	67.6	59.8 60	J.6 6	39.0 6₫	4.6 52	2 50.4	4 65.0	51.4 5	0.3 51	.3 55.8
Existing plus Project (PM)		6	0	28,616	40	75	0	0	1.8%	0.7%	67.7	##### ####	# #####	450	178	26	6	39	16	67.4	76.3	81.2 -	1.5	37.1	59.3 60	J.1 6	38.5 64	1.2 51	.7 49.9	64.5	51.0 4	9.8 50	.9 55.3
Cumulative (AM)		6	0	34,552	40	75	0	0	1.8%	0.7%	68.5	##### ####	#####	544	216	31	7	47	19	67.4	76.3	81.2 -	1.5	67.9 (60.1 60	J.9 6	39.3 65	5.0 52	:.5 50.8	65.4	51.8 5	0.6 51	.7 56.2
Cumulative (PM)		6	0	30,912	40	75	0	0	1.8%	0.7%	68.1	##### ####	#####	486	193	28	6	42	17	67.4	76.3	81.2 -	1.5	37.5	59.6 60	J.4 6	38.8 64	1.5 52	0 50.3	3 64.9	51.3 5	0.2 51	.2 55.7
Cumulative plus Project (AM)		6	0	34,680	40	75	0	0	1.8%	0.7%	68.6	##### ####	# #####	546	216	32	7	47												65.4			
Cumulative plus Project (PM)		6	0	30,952	40	75	0	0	1.8%	0.7%	68.1	##### ####	# #####	487	193	28	6	42	17	67.4	76.3	81.2 -	1.5	37.5	59.6 60	J.4 6	38.8 64	1.5 52	0 50.3	64.9	51.3 5	0.2 51	.2 55.7
US Highway 101 SB Ramp																																	
Existing (AM)		2	0	0	40	75	0	0	1.8%	0.7%	#NUM!	0 0	0	0	0	0	0	0	0	67.4	76.3	81.2 -	1.8 #	#### #	#### ###	## ##	### ##	## ###	# ####	; #### #	#### ##	### ###	# ####
Existing (PM)		2	0	0	40	75	0	0	1.8%	0.7%	#NUM!	0 0	0	0	0	0	0	0	0	67.4	76.3	81.2 -	1.8 #	#### #	#### ###	## ##	 	## ###	# ###	} ##### #	### ##	### ###	# ####
Existing plus Project (AM)		2	0	0	40	75	0	0	1.8%	0.7%	#NUM!	0 0	0	0	0	0	0	0	0	67.4	76.3	81.2 -	1.8 #	#### #	****** ##	## ##	### ##	## ###	## ####	; #### #	#### ##	### ###	# ####
Existing plus Project (PM)		2	0	0	40	75	0	0	1.8%	0.7%	#NUM!	0 0	0	0	0	0	0	0	0	67.4	76.3	81.2 -	1.8 #	#### #	#### ##	## ##	### ###	## ###	## #####	; #### #	#### ##	### ###	# ####
Cumulative (AM)		2	0	0	40	75	0	0	1.8%	0.7%	#NUM!	0 0	0	0	0	0	0	0	0	67.4	76.3	81.2 -	1.8 #	#### #	#### ###	## ##	### ##	## ###	# ####	} ##### #	### ##	### ###	# ####
Cumulative (PM)		2	0	0	40	75	0	0	1.8%	0.7%	#NUM!	0 0	0	0	0	0	0	0	0	67.4	76.3	81.2 -	1.8 #	#### #	#### ###	## ##	### ##	## ###	# ###	} ##### #	#### ##	### ###	# ####
Cumulative plus Project (AM)		2	0	0	40	75	0	0	1.8%	0.7%	#NUM!	0 0	0	0	0	0	0	0	0	67.4	76.3	81.2 -	1.8 #	#### #	#### ###	## ##	 	## ###	# ###	} #### #	#### ##	### ###	# ####
Cumulative plus Project (PM)		2	0	0	40	75	0	0	1.8%	0.7%	#NUM!	0 0	0	0	0	0	0	0	0	67.4	76.3	81.2 -	1.8 #	#### #	#### ##	## ##	 	## ###	## #####	; #### #	#### ##	### ###	# ####
US Highway 101 SB Ramp																																	
Existing (AM)		3	0	9,120	40	75	0	0	1.8%	0.7%	62.4	##### ####		144	57	8	2	12	-											5 59.3		4.5 45	6.6 50.1
Existing (PM)		3	0	6,360	40	75	0	0	1.8%	0.7%	60.9	#### 808		100	40	6	1	9	4	67.4	76.3	81.2 -	1.8	60.3	52.4 53	3.2 6	31.6 57	7.3 44	.8 43.1	1 57.7	44.1 4	3.0 44	.0 48.5
Existing plus Project (AM)		3	0	9,224	40	75	0	0	1.8%	0.7%	62.5	##### ####		145	58	8	2	12	5	67.4	76.3	81.2 -	1.8	31.9	54.0 54	1.9 6	33.2 58	3.9 46	.4 44.7	7 59.3	45.7 4	4.6 45	5.6 50.1
Existing plus Project (PM)		3	0	6,392	40	75	0	0	1.8%	0.7%	60.9	#### 812		101	40	6	1	9	4	67.4	76.3	81.2 -			52.4 53	3.3 6	1.6 57ء	7.3 44	1.9 43.1	1 57.7	44.1 4	3.0 44	.0 48.5
Cumulative (AM)		3	0	10,200	40	75	0	0	1.8%	0.7%	62.9	##### ####	, 0.0	161	64	9	2	14	6		76.3						63.7 59				46.2 4	5.0 46	5.1 50.5
Cumulative (PM)		3	0	7,296	40	75	0	0	1.8%	0.7%	61.5	#### 927		115	46	7	1	10	4										5.4 43.7				.6 49.1
Cumulative plus Project (AM)		3	0	10,304	40	75	0	0	1.8%	0.7%	63.0	##### ####	, 000	162	64	9	2	14	6			81.2 -								2 59.8			5.1 50.6
Cumulative plus Project (PM)		3	0	7,328	40	75	0	0	1.8%	0.7%	61.5	#### 931	703	115	46	7	1	10	4	67.4	76.3	81.2 -	1.8	60.9	53.0 53	3.9 6	j2.2 57	/.9 45	.4 43.7	7 58.3	44.7 4	3.6 44	.6 49.1

⁽¹⁾ Alpha Factor: Coefficient of absorption relating to the effects of the ground surface. An alpha factor of 0 indicates that the site is an acoustically "hard" site such as aspalt. An alpha factor of 0.5 indicates that the site is an acoustically "soft" site such as vegetative ground cover.

Assumed 24-Hour Traffic Distribution:	Day	Evening	Night
Total ADT Volumes	77.70%	12.70%	9.60%
Medium-Duty Trucks	87.43%	5.05%	7.52%
Heavy-Duty Trucks	89.10%	2.84%	8.06%

Ductoot Name						/D-	4-1		1	1		If Deals Have - CO	/ of ADT Coolin	- Fastar - 10 60°	,	I	
Project Name			_			rev. (Da	te)					If Peak Hour = 69					
Weekday AM/PM F	eak Hour vo	lumes	8									If Peak Hour = 79			D		
												If Peak Hour = 89					
Intersection:	6											If Peak Hour = 99			1		
Rose Ave and I	ockwood Str	eet										If Peak Hour = 10	% of ADT, Scali				
														ADT			
					ose Av	е						Road	Rose			od Street	<u></u>
				Southbound								Leg	North of	South of	East of	West of	
					<u>right</u>	through	left					Cross Street	Lockwoo	od Street	Ros	e Ave	
				Existing (AM)	391	1,486	305					Existing (AM)	34,248.0	27,400.0	7,984.0	11,088.0	
				Existing (PM)	162	1,305	319					Existing (PM)	31,656.0	25,624.0	5,832.0	4,424.0	
				Existing + Project	391	1,486	321					Existing + Projec	34,456.0	27,400.0	8,208.0	11,104.0	
				Existing + Project	162	1,305	323					Existing + Projec	31,840.0	25,624.0	6,032.0	4,440.0	
				Cumulative (AM)	401	1,731	321					Cumulative (AM)	38,856.0	31,920.0	8,568.0	11,584.0	
				Cumulative (PM)	167	1,535	327					Cumulative (PM)	35,648.0	29,544.0	6,168.0	4,688.0	
Eastbound				Cumulative + Pro	401	1,731	337	Westbound				Cumulative + Pro	39,064.0	31,920.0	8,792.0	11,600.0	
ţ	left thro	ough	<u>right</u>	Cumulative + Pro	167	1,535	331		<u>right</u>	through	<u>left</u>	Cumulative + Pro	35,832.0	29,544.0	6,368.0	4,704.0	
Existing (AM) Existing (PM)	392	93	199					Existing (AM)	359	80	117						
Existing (PM)		19	63					Existing (PM)	269	36	28						
Existing + Proje		94	199					Existing + Project		81	117						
Existing + Proje	d 183	50	63					Existing + Project	288	37	28						
Cumulative (AM Cumulative (PM	1) 402 1	04	209					Cumulative (AM	374	91	127						
Cumulative (PN	1) 188 5	56	68					Cumulative (PM	280	42	33						
Cumulative + P	r 402 1	05	209					Cumulative + Pr	384	92	127						
Cumulative + P	re 188	57	68	Northbound				Cumulative + Pr	299	43	33						
					<u>left</u>	through	right										
				Existing (AM)	231	1,348	44										
				Existing (PM)	60	1,719	28										
				Existing + Project	231	1,348	44										
				Existing + Project	60	1,719	28										
				Cumulative (AM)	241	1,628	54										
				Cumulative (PM)	65	1,959	33										
				Cumulative + Pro	241	1628	54										
				Cumulative + Pro	65	1,959	33										

2 NOI SE LEVEL CONTOURS - Existing Plus Project Weekday Off-Site ADT Volumes

												- Tra	affic Vo	lumes							Ref. E	nerav	l evels	Dist	Ιd			Le	e			Ln			
					Design	Dist. from		Barrier	Vehic	eMix																			-						
ROADWAY NAME			Median	ADT	Speed	Center to A	pha	Attn.	Medium	Heavy	dB(A)) Da	av Eve	Night	MTd	HTd	МТе	НТе	MTn	HTn	Α	МТ	НТ	Adi	Α	MT I	нт т	otal A	МТ	г нт	Total	Α	MT	НТ	Total
Segment	Land Use	Lanes	Width	Volume	(mph)	Receptor Fac	or (1	dB(A)	Trucks				,	3										,											
Rose Ave n/o Lockwood																																			
Existing (AM)		6	0	34,248	40	75	0	0	1.8%	0.7%	68.5	##	*****	# ####	539	214	31	7	46	19	67.4	76.3	81.2	-1.5	67.9	60.1	60.9	69.3 F	34.9 52	2.5 50.	7 65.3	51.7	50.6	51.6	56.1
Existing (PM)		6	0	31,656	40	75	0	0	1.8%	0.7%	68.2	##	### ###	# ####	498	197	29	6	43	18	67.4	76.3	81.2	-1.5	67.6	59.7	60.5	68.9 €	34.6 52	2.1 50.	4 65.0	51.4	50.3	51.3	55.8
Existing plus Project (AM)		6	0	34,456	40	75	0	0	1.8%	0.7%	68.5	##	### ###	# ####	542	215	31	7	47	19	67.4	76.3	81.2	-1.5	67.9	60.1	60.9	69.3 6	35.0 52	2.5 50.	7 65.3	51.8	50.6	51.7	56.2
Existing plus Project (PM)		6	0	31,840	40	75	0	0	1.8%	0.7%	68.2	##	### ###	# ####	501	199	29	6	43	18	67.4	76.3	81.2	-1.5	67.6	59.7	60.6	68.9 6	34.6 57	2.2 50.	4 65.0	51.4	50.3	51.3	55.8
Cumulative (AM)		6	0	38,856	40	75	0	0	1.8%	0.7%	69.1	##	### ###	# ####	611	242	35	8	53	22	67.4	76.3	81.2	-1.5	68.5	60.6	61.4	69.8 6	35.5 57	3.0 51.	3 65.9	52.3	51.1	52.2	56.7
Cumulative (PM)		6	0	35,648	40	75	0	0	1.8%	0.7%	68.7	##	### ###	# ####	561	222	32	7	48	20	67.4	76.3	81.2	-1.5	68.1	60.2	61.1	69.4 6	35.1 52	2.6 50.	9 65.5	51.9	50.8	51.8	56.3
Cumulative plus Project (AM)	_	6	0	39,064	40	75	0	0	1.8%	0.7%	69.1	##	### ###	# ####	615	244	36	8	53	22	67.4	76.3	81.2	-1.5	68.5	60.6	61.5	69.8	35.5 57	3.0 51.	3 65.9	52.3	51.2	52.2	56.7
Cumulative plus Project (PM)		6	0	35,832	40	75	0	0	1.8%	0.7%	68.7	##	### ###	# ####	564	223	33	7	49	20	67.4	76.3	81.2	-1.5	68.1	60.2	61.1	69.4 6	35.1 57	2.7 50.	9 65.5	51.9	50.8	51.8	56.3
Rose Ave s/o Lockwood																																			
Existing (AM)		6	0	27,400	40	75	0	0	1.8%	0.7%	67.5	##	### ###	# ####	431	171	25	5	37	15										1.5 49.					
Existing (PM)		6	0	25,624	40		0	0	1.8%	0.7%	67.2		### ###	# ####	403	160	23	5	35	14										1.2 49.					
Existing plus Project (AM)		6	0	27,400	40		0	0	1.8%	0.7%	67.5		### ###	# ####	431	171	25	5	37	15	67.4	76.3	81.2	-1.5	66.9	59.1	59.9	68.3	34.0 51	1.5 49.	7 64.4	50.8	49.6	50.7	55.2
Existing plus Project (PM)		6	0	25,624	40		0	0	1.8%	0.7%	67.2		### ###	# ####	403	160	23	5	35											1.2 49.					
Cumulative (AM)		6	0	31,920	40		0	0	1.8%	0.7%	68.2		### ###	# ####	502	199	29	6	43	18	67.4	76.3	81.2	-1.5						2.2 50.					
Cumulative (PM)		6	0	29,544	40		0	0	1.8%	0.7%	67.9	····	***** *****		465	184	27	6	40	17										1.8 50.		51.1			
Cumulative plus Project (AM)		6	0	31,920	40		0	0	1.8%	0.7%	68.2		### ###		-	199	29	6	43	18										2.2 50.					
Cumulative plus Project (PM)		6	0	29,544	40	75	0	0	1.8%	0.7%	67.9	##	### ###	# ####	465	184	27	6	40	17	67.4	76.3	81.2	-1.5	67.3	59.4	60.2	68.6	34.3 5 ¹	1.8 50.	1 64.7	51.1	50.0	51.0	55.5
Lockwood Street e/o Rose																																			
Existing (AM)		2	0	7,984	30		0	0	1.8%	0.7%	59.4		### ###	,, ,,,,,	126	50	7	2	11	5		73.1								3.8 44.					
Existing (PM)		2	0	5,832	30		0	0	1.8%	0.7%	58.1	····	### 74		92	36	5	1	8	3		73.1								2.5 43.					
Existing plus Project (AM)		2	0	8,208	30		0	0	1.8%	0.7%	59.5		### ###		129	51	7	2	11	5			80.3			51.5				4.0 44.					
Existing plus Project (PM)		2	0	6,032	30		0	0	1.8%	0.7%	58.2		### 76		95	38	5	1	8	3										2.6 43.					
Cumulative (AM)		2	0	8,568	30		0	0	1.8%	0.7%	59.7	····	### ###	,, O <u>L</u> O	135	53	8	2	12	5										4.1 44.					
Cumulative (PM)	_	2	0	6,168	30		0	0	1.8%	0.7%	58.3		### 78		97	38	6	1	8	3		73.1								2.7 43.					
Cumulative plus Project (AM)	-	2	0	8,792	30		0	0	1.8%	0.7%	59.8		### ###		138	55	8	2	12	5		73.1								4.2 44.					
Cumulative plus Project (PM) Lockwood Street w/o Rose		2	0	6,368	30	75	0	0	1.8%	0.7%	58.4	###	### 80	9 611	100	40	6	1	9	4	62.5	/3.1	80.3	-1.8	56.6	50.4	53.6	59.0 5	3.7 42	2.8 43.	4 54.4	40.5	41.0	44.3	47.1
		5	0	11.088	05	75	0	0	1.8%	0.70/	59.5		*****		474	69	40		45	_	59.4	74.4	70.7	4.0	F7.0	F4 0			-40 4	4.2 45.		400	40.4	40.0	40.5
Existing (AM) Existing (PM)		5	0	4.424	25 25		0	0	1.8%	0.7% 0.7%	55.5	····	### 56:		70	28	10	4	15	2		71.1 71.1								4.2 45. 0.3 41.					
Existing (PM) Existing plus Project (AM)		5	0	11.104	25 25		0	0	1.8%	0.7%	59.5		### 30. ### ###		175	20	40	1	15	2		71.1								0.3 41. 4.2 45.					
- 41		•	0	4.440	25 25		0	0		0.7%	55.5		mm mmn		70	28	10	4	15	0															
Existing plus Project (PM) Cumulative (AM)		5	0	4,440 11.584	25 25		0	0	1.8%		59.7		### 56 ### ###			28 72	4	1	16	3		71.1		-1.6						0.3 41.					
Cumulative (AM) Cumulative (PM)		5	0	4.688	25 25		0 0	0	1.8% 1.8%	0.7% 0.7%	59.7 55.8	····	### 59:		182 74	72 29	17	1	10	3			78.7 78.7	-1.6 -1.6		52.0 48.1				4.4 45. 0.5 41.				46.4 42.5	
		5	0	11.600	25 25		0 0	0	1.8%	0.7%	55.8		### 59: #### ####		74 183	29 72	4	1	16	3		71.1								0.5 41. 4.4 45.					
Cumulative plus Project (AM)		5 5	0	4.704	25 25	75 75	0	0	1.8%	0.7%	55.8		### 59°		74	72 29	4	1	10	2										4.4 45. 0.5 41.					
Cumulative plus Project (PM)			υ.	4,704	25	/5	υ		1.8%	0.7%	55.8	7777	11111 59	1 452	74	29	4	- 1	6	3	59.4	71.1	16.1	-1.0	53.3	40.1	51.7	30.3 5	JU.S 40	J.5 41.	0 31.2	37.1	36.6	42.5	44.8

⁽¹⁾ Alpha Factor: Coefficient of absorption relating to the effects of the ground surface. An alpha factor of 0 indicates that the site is an acoustically "hard" site such as aspalt. An alpha factor of 0.5 indicates that the site is an acoustically "soft" site such as vegetative ground cover.

Assumed 24-Hour Traffic Distribution:	Day	Evening	Night
Total ADT Volumes	77.70%	12.70%	9.60%
Medium-Duty Trucks	87.43%	5.05%	7.52%
Heavy-Duty Trucks	89.10%	2.84%	8.06%

Project NamP Feak Hour 19% of ADT, Scaling Factor = 16.667 Feak Hour 29% of ADT, Scaling Factor = 14.286 Feak Hour 29% of ADT, Scaling Factor = 14.286 Feak Hour 29% of ADT, Scaling Factor = 14.286 Feak Hour 29% of ADT, Scaling Factor = 10.5	Ducinet Name		П	-	Т		/D	4-1	T	1	1		If Dook Hour - 00	/ -4 ADT 04-11-	- Faster - 40 00°	,	I	
Intersection: 7		ale Hacco	Malum: :				rev. (Da	te)		-								
Intersection: 7	vvеекаау AM/PM P	eak Hour	volume	95						-						0		+
Rose Ave and Gonzales Road		_																
Rose Ave		7														1		
Rose Ave Rose Ave	Rose Ave and G	ionzales F	Road										If Peak Hour = 10	% of ADT, Scali				
Southbound Fight Fig																		
Fight Consisting Consisti						ose Av	е						Road					
Existing (AM) 460 1,246 147					Southbound													
Existing (PM) 263 926 274						<u>right</u>	through	<u>left</u>					Cross Street	Gonzale		Ros	e Ave	
Existing + Project 460 1,246 147 Existing + Project 28,248.0 25,272.0 16,128.0 23,376.0					Existing (AM)	460	1,246	147					Existing (AM)	28,248.0	25,232.0	15,928.0	23,216.0	
Existing + Project 263 926 274					Existing (PM)	263	926	274					Existing (PM)	26,688.0	23,008.0	15,080.0	21,880.0	
Cumulative (AM 560 1,366 197					Existing + Project	460	1,246	147					Existing + Projec	28,248.0	25,272.0	16,128.0	23,376.0	
Eastbound Cumulative (PM 323 1,026 334 Cumulative + Pr 560 1,366 197 Westbound Cumulative + Pr 32,808.0 28,992.0 30,576.0 37,752.0					Existing + Project	263	926						Existing + Projec	26,688.0	23,048.0	15,280.0		
Eastbound Cumulative + Pr 560 1,366 197 Westbound Cumulative + Pr 32,808.0 28,992.0 30,576.0 37,752.0					Cumulative (AM)	560	1,366	197					Cumulative (AM)	32,808.0	28,952.0	30,376.0	37,592.0	
Part					Cumulative (PM)	323	1,026	334					Cumulative (PM)	30,448.0	26,248.0	28,440.0	34,528.0	
Existing (AM) 462 454 153	Eastbound				Cumulative + Pro	560	1,366	197	Westbound				Cumulative + Pro	32,808.0	28,992.0	30,576.0	37,752.0	
Existing + Project 462 466 153		<u>left</u> t	hrough	right	Cumulative + Pro	323	1,026	334		right	through	<u>left</u>	Cumulative + Pro	30,448.0	26,288.0	28,640.0	34,688.0	
Existing + Project 462 466 153 Existing + Project 169 951 185 Existing + Project 644 812 262 Existing + Project 115 452 76 Cumulative (AM) 562 950 196 Cumulative (AM) 219 2,001 234 Cumulative (PM) 724 1,974 292 Cumulative (PM) 165 678 123 Cumulative + Pri 562 962 196 Section 196 Cumulative + Pri 724 1979 292 Northbound Cumulative + Pri 724 1979 292 Section 196 Section 197 197 197 197 197 197 197 197 197 197	Existing (AM)	462	454	153					Existing (AM)	169	943	183						
Existing + Project 462 466 153 Existing + Project 169 951 185 Existing + Project 644 812 262 Existing + Project 115 452 76 Cumulative (AM) 562 950 196 Cumulative (AM) 219 2,001 234 Cumulative (PM) 724 1,974 292 Cumulative (PM) 165 678 123 Cumulative + Pri 562 962 196 Section 196 Cumulative + Pri 724 1979 292 Northbound Cumulative + Pri 724 1979 292 Section 196 Section 197 197 197 197 197 197 197 197 197 197	Existing (PM)	644	807	262					Existing (PM)	115	437	72						
Cumulative (PM) 724 1,974 292	g Existing + Proje	462	466	153					Existing + Project	169	951	185						
Cumulative (PM) 724 1,974 292	Existing + Proje	644		262					Existing + Project	115	452	76						
Cumulative (PM) 724 1,974 292	Cumulative (AM	562	950	196					Cumulative (AM	219	2,001	234						
Cumulative + Pri 724 1979 292 Northbound Cumulative + Pri 165 693 127 Image: Complete the complete complete the complete co	Cumulative (PM	724	1,974	292					Cumulative (PM	165	678	123						
	Cumulative + Pr	562	962	196					Cumulative + Pr	219	2,009	236						
Existing (AM) 430 1,047 95 Existing (PM) 322 1,114 180	Cumulative + Pr	724	1979	292	Northbound				Cumulative + Pr	165	693	127						
Existing (PM) 322 1,114 180						<u>left</u>	through	right										
					Existing (AM)		1,047											
Evicting + Project 420 1 047 08					Existing (PM)	322	1,114											
					Existing + Project	430	1,047	98										
Existing + Project 322 1,114 181					Existing + Project	322	1,114	181										
Cumulative (AM 430 1,197 196						430	1,197	196										
Cumulative (PM 325 1,234 281					Cumulative (PM)	325	1,234	281										
Cumulative + Pr 430 1197 199					Cumulative + Pro	430	1197	199										
Cumulative + Pri 325 1,234 282					Cumulative + Pro	325	1,234	282										
																		1

2 NOI SE LEVEL CONTOURS - Existing Plus Project Weekday Off-Site ADT Volumes

-												TrafficVolu	ımes							Ref. E	nergy I	_evels [Dist	Ld			L	_e			Ln			
					Design	Dist. from	1	Barrier	Vehic	eMix																								
ROADWAY NAME			Median	ADT	Speed	Center to	Alpha	Attn.	Medium	Heavy	dB(A)	Day Eve	Night	MTd I	HTd I	MTe H	НТе	MTn	HTn	Α	MT	HT /	Adj	Α	MT H	dT 1	Total A	۸ M	IT HT	Tota	ΙA	MT	нт т	otal
Segment	Land Use	Lanes	Width	Volume	(mph)	Receptor	Factor (1	dB(A)	Trucks	Trucks	CNEL																							
Rose Ave n/o Gonzales Road																																		
Existing (AM)		6	0	28,248	40	75	0	0	1.8%	0.7%	67.7	##### #####	#####	445	176	26	6	38	16	67.4	76.3	81.2	-1.5	67.1	59.2	60.0	68.4	64.1 5	51.6 49	9.9 64.	5 50.9	49.8	50.8	55.3
Existing (PM)		6	0	26,688	40	75	0	0	1.8%	0.7%	67.4	##### #####	#####	420	166	24	5	36	15	67.4	76.3	81.2	-1.5	66.8	59.0	59.8	68.2	63.8 5	51.4 49	9.6 64.2	2 50.7	49.5	50.6	55.0
Existing plus Project (AM)		6	0	28,248	40	75	0	0	1.8%	0.7%	67.7	##### #####	#####	445	176	26	6	38	16	67.4	76.3	81.2	-1.5	67.1	59.2	60.0	68.4	64.1 5	51.6 49	9.9 64.	5 50.9	49.8	50.8	55.3
Existing plus Project (PM)		6	0	26,688	40	75	0	0	1.8%	0.7%	67.4	##### #####	#####	420	166	24	5	36	15	67.4	76.3	81.2	-1.5	66.8	59.0	59.8	68.2	63.8 £	51.4 49	9.6 64.2	2 50.7	49.5	50.6	55.0
Cumulative (AM)		6	0	32,808	40	75	0	0	1.8%	0.7%	68.3	##### #####	#####	516	205	30	7	44	19	67.4	76.3	81.2	-1.5	67.7	59.9	60.7	69.1	64.7 5	52.3 50	0.5 65.	51.5	50.4	51.5	55.9
Cumulative (PM)		6	0	30,448	40	75	0	0	1.8%	0.7%	68.0	##### #####	#####	479	190	28	6	41	17	67.4	76.3	81.2	-1.5	67.4	59.5	60.4	68.7	64.4 5	52.0 50	0.2 64.8	3 51.2	50.1	51.1	55.6
Cumulative plus Project (AM)		6	0	32,808	40	75	0	0	1.8%	0.7%	68.3	##### #####	#####	516	205	30	7	44	19	67.4	76.3	81.2	-1.5	67.7	59.9	60.7	69.1	64.7 5	52.3 50	0.5 65.	1 51.5	50.4	51.5	55.9
Cumulative plus Project (PM)		6	0	30,448	40	75	0	0	1.8%	0.7%	68.0	##### #####	#####	479	190	28	6	41	17	67.4	76.3	81.2	-1.5	67.4	59.5	60.4	68.7	64.4 5	52.0 50	0.2 64.8	3 51.2	50.1	51.1	55.6
Rose Ave s/o Gonzales Road																																		
Existing (AM)		6	0	25,232	40	75	0	0	1.8%	0.7%	67.2	##### #####	#####	397	157	23	5	34	14										51.1 49					
Existing (PM)		6	0	23,008	40	75	0	0	1.8%	0.7%	66.8	##### #####	#####	362	144	21	5	31											50.7 49					
Existing plus Project (AM)		6	0	25,272	40	75	0	0	1.8%	0.7%	67.2	##### #####	#####	398	158	23	5	34	14	67.4	76.3	81.2	-1.5	66.6	58.7	59.6	67.9	63.6 5	51.1 49	9.4 64.0) 50.4	49.3	50.3	54.8
Existing plus Project (PM)		6	0	23,048	40	75	0	0	1.8%	0.7%	66.8	##### #####	#####	363	144	21	5	31	13	67.4	76.3	81.2	-1.5	66.2	58.3	59.2	67.5	63.2 5	50.7 49	9.0 63.0	3 50.0	48.9	49.9	54.4
Cumulative (AM)		6	0	28,952	40	75	0	0	1.8%	0.7%	67.8	##### #####	#####	456	181	26	6	39	16	67.4	76.3	81.2	-1.5	67.2	59.3	60.2	68.5	64.2 5	51.7 50	0.0 64.6	3 51.0	49.9	50.9	55.4
Cumulative (PM)		6	0	26,248	40	75	0	0	1.8%	0.7%	67.4	##### #####	#####	413	164	24	5	36	15	67.4	76.3	81.2	-1.5	66.8	58.9	59.7	68.1	63.8 £	51.3 49	9.6 64.2	2 50.6	49.4	50.5	55.0
Cumulative plus Project (AM)		6	0	28,992	40	75	0	0	1.8%	0.7%	67.8	#####	#####	456	181	26	6	39											51.7 50					
Cumulative plus Project (PM)		6	0	26,288	40	75	0	0	1.8%	0.7%	67.4	##### #####	#####	414	164	24	5	36	15	67.4	76.3	81.2	-1.5	66.8	58.9	59.7	68.1	63.8 5	51.3 49	9.6 64.2	2 50.6	49.4	50.5	55.0
Gonzales Road e/o Rose Ave																																		
Existing (AM)		6	15	15,928	40	75	0	0	1.8%	0.7%	65.4	##### #####		251	99	14	3	22	9	67.4	76.3	81.2	-1.2	64.8	57.0	57.8	66.2	61.9 4	49.4 47	7.6 62.2	2 48.7	47.5	48.6	53.0
Existing (PM)		6	15	15,080	40	75	0	0	1.8%	0.7%	65.2	##### #####	#####	237	94	14	3	20	9	67.4	76.3	81.2	-1.2	64.6	56.7	57.6	65.9	61.6	49.2 47	7.4 62.0) 48.4	47.3	48.3	52.8
Existing plus Project (AM)		6	15	16,128	40	75	0	0	1.8%	0.7%	65.5	##### #####	#####	254	101	15	3	22	9	67.4	76.3	81.2	-1.2	64.9	57.0	57.9	66.2	61.9	49.4 47	7.7 62.3	3 48.7	47.6	48.6	53.1
Existing plus Project (PM)		6	15	15,280	40	75	0	0	1.8%	0.7%	65.2	##### #####	#####	240	95	14	3	21	9										49.2 47				48.4	
Cumulative (AM)		6	15	30,376	40	75	0	0	1.8%	0.7%	68.2	##### #####	#####	478	189	28	6	41											52.2 50					
Cumulative (PM)		6	15	28,440	40	75	0	0	1.8%	0.7%	67.9	##### #####	#####	448	177	26	6	38											51.9 50					
Cumulative plus Project (AM)		6	15	30,576	40	75	0	0	1.8%	0.7%	68.3	##### #####	#####	481	191	28	6	41	17	67.4	76.3	81.2	-1.2	67.7	59.8	60.6	69.0	64.7	52.2 50	0.5 65.	I 51.5	50.4	51.4	55.9
Cumulative plus Project (PM)		6	15	28,640	40	75	0	0	1.8%	0.7%	68.0	##### #####	#####	451	179	26	6	39	16	67.4	76.3	81.2	-1.2	67.4	59.5	60.3	68.7	64.4 5	51.9 50	0.2 64.8	3 51.2	50.1	51.1	55.6
Gonzales Road w/o Rose Ave																																		
Existing (AM)		6	15	23,216	40	75	0	0	1.8%	0.7%	67.1	##### #####		365	145	21	5	31											51.0 49					
Existing (PM)		6	15	21,880	40	75	0	0	1.8%	0.7%	66.8	##### #####	#####	344	136	20	4	30	12	67.4	76.3	81.2	-1.2	66.2	58.4	59.2	67.6	63.2 5	50.8 49	9.0 63.0	3 50.0	48.9	49.9	54.4
Existing plus Project (AM)		6	15	23,376	40	75	0	0	1.8%	0.7%	67.1	##### #####	#####	368	146	21	5	32	13	67.4	76.3	81.2	-1.2	66.5	58.6	59.5	67.8	63.5	51.1 49	9.3 63.9	€ 50.3	49.2	50.2	54.7
Existing plus Project (PM)		6	15	22,040	40	75	0	0	1.8%	0.7%	66.8	##### #####	#####	347	137	20	4	30	12	67.4	76.3					59.2	67.6	63.3 £	50.8 49	9.0 63.7	7 50.1	48.9	50.0	54.5
Cumulative (AM)		6	15	37,592	40	75	0	0	1.8%	0.7%	69.2	##### #####	#####	592	234	34	7	51	21		76.3			68.6					53.1 51				52.3	
Cumulative (PM)		6	15	34,528	40	75	0	0	1.8%	0.7%	68.8	##### #####			215	31	7	47			76.3								52.8 51					
Cumulative plus Project (AM)		6	15	37,752	40	75	0	0	1.8%	0.7%	69.2	##### #####			235	34	8	51											53.1 51				52.3	
Cumulative plus Project (PM)		6	15	34,688	40	75	0	0	1.8%	0.7%	68.8	##### #####	#####	546	216	32	7	47	20	67.4	76.3	81.2	-1.2	68.2	60.4	61.2	69.6	65.2 5	52.8 51	1.0 65.0	3 52.0	50.9	51.9	56.4

⁽¹⁾ Alpha Factor: Coefficient of absorption relating to the effects of the ground surface. An alpha factor of 0 indicates that the site is an acoustically "hard" site such as aspalt. An alpha factor of 0.5 indicates that the site is an acoustically "soft" site such as vegetative ground cover.

Assumed 24-Hour Traffic Distribution:	Day	Evening	Night
Total ADT Volumes	77.70%	12.70%	9.60%
Medium-Duty Trucks	87.43%	5.05%	7.52%
Heavy-Duty Trucks	89.10%	2.84%	8.06%

Project Name					rev. (Da	۱۵۱	1	1	1		Т	If Peak Hour = 69	/ of ADT Coolin	a Footor - 16 66			
Weekday AM/PM Po	ak Haus Valum				rev. (Da	ie)						If Peak Hour = 79					
Weekuay AM/PM P	ak nour volume	35										If Peak Hour = 89			0		J
latana atiana	8											If Peak Hour = 85	6 of ADT, Scalin	ig Factor = 12.5	4		
Intersection:												If Peak Hour = 99			1		
Williams Drive a	nd Gonzales Roa	a										If Peak Hour = 10	% of ADI, Scall				
														ADT			
				iams D	rive							Road	William			es Road	
			Southbound									Leg	North of	South of	East of	West of	
				<u>right</u>	through	<u>left</u>						Cross Street	Gonzale			ns Drive	
			Existing (AM)	116	159	149						Existing (AM)	6,368.0	5,584.0	16,176.0	16,032.0	
			Existing (PM)	17	71	88						Existing (PM)	4,424.0	5,472.0	14,000.0	14,664.0	
			Existing + Project	116	159	149						Existing + Projec	6,368.0	5,584.0	16,376.0	16,232.0	
			Existing + Project	71	71	88						Existing + Projec	4,856.0	5,472.0	14,200.0	15,296.0	
			Cumulative (AM)	116	159	149						Cumulative (AM)	6,368.0	5,584.0	30,624.0	30,480.0	
			Cumulative (PM)	17	71	88						Cumulative (PM)	4,424.0	5,472.0	27,360.0	28,024.0	
Eastbound			Cumulative + Pro	116	159	149	Westbound					Cumulative + Pro	6,368.0	5,584.0	30,824.0	30,680.0	
	left through	<u>right</u>	Cumulative + Pro	17	71	88		right	through	<u>left</u>		Cumulative + Pro	4,424.0	5,472.0	27,560.0	28,224.0	
Existing (AM) Existing (PM)	70 571	95					Existing (AM)	156	1,000	87							
Existing (PM)	83 989	127					Existing (PM)	118	431	70							
Existing + Project Existing + Project Cumulative (AM	70 586	95					Existing + Project	156	1,010	87							
Existing + Project	83 995	127					Existing + Project	118	450	70							
Cumulative (AM	70 1,218	95					Cumulative (AM	156	2,159	87							
Cumulative (PM	83 2,317	127					Cumulative (PM	118	773	70							
Cumulative + Pr	70 1,233	95					Cumulative + Pr	156	2,169	87							
Cumulative + Pr	83 2323	127	Northbound				Cumulative + Pr	118	792	70							
				<u>left</u>	through	right											
			Existing (AM)	152	146	59											
			Existing (PM)	186	176	54											
			Existing + Project	152	146	59											1
			Existing + Project	186	176	54											1
			Cumulative (AM)	152	146	59											
			Cumulative (PM)	186	176	54											
			Cumulative + Pro	152	146	59											
			Cumulative + Pro	186	176	54											
																	1
																	+
1	1 1		1		1		1				1	1		l .		1	.1

2 NOI SE LEVEL CONTOURS - Existing Plus Project Weekday Off-Site ADT Volumes

												_ Traffic	Volun	nes							Ref. E	nerav I.	evels [Dist I	d				_e			Ln			
					Design	Dist. from		Barrier	Vehic	deMix																		_	-						
ROADWAY NAME			Median	ADT		Center to					dB(A)	Day E	e I	Niaht N	ΛTd F	HTd N	MTe H	HTe	MTn I	HTn .	Α	мт і	HT A	Adi A	Δ	мт н	ıT ٦	Total A	4 N	ит н	T Tot	tal A	MT	нт 1	Fotal
	Land Use	Lanes	Width	Volume		ReceptorF				Trucks		, -												, .											
Williams Drive n/o Gonzales																																			
Existing (AM)		2	0	6.368	30	75	0	0	1.8%	0.7%	58.4	#####	809	611	100	40	6	1	9	4	62.5	73.1	80.3	-1.8	56.6	50.4	53.6	59.0	53.7 4	42.8 4	3.4 54	1.4 40.5	41.0	44.3	47.1
Existing (PM)		2	0	4,424	30	75	0	0	1.8%	0.7%	56.9	#####	562	425	70	28	4	1	6	2	62.5	73.1	80.3	-1.8	55.1	48.9	52.0	57.4	52.1 4	41.3 4	11.8 52	2.8 38.9	39.4	42.7	45.5
Existing plus Project (AM)		2	0	6,368	30	75	0	0	1.8%	0.7%	58.4	#####	809	611	100	40	6	1	9	4	62.5	73.1	80.3	-1.8	56.6	50.4	53.6	59.0	53.7 4	42.8 4	3.4 54	4.4 40.5	41.0	44.3	47.1
Existing plus Project (PM)		2	0	4,856	30	75	0	0	1.8%	0.7%	57.3	#####	617	466	76	30	4	1	7	3	62.5	73.1	80.3	-1.8	55.5	49.3	52.4	57.8	52.5	41.7 4	2.2 53	3.2 39.3	39.8	43.1	45.9
Cumulative (AM)		2	0	6,368	30	75	0	0	1.8%	0.7%	58.4	#####	809	611	100	40	6	1	9	4	62.5	73.1	80.3	-1.8	56.6	50.4	53.6	59.0	53.7 4	42.8 4	3.4 54	1.4 40.5	41.0	44.3	47.1
Cumulative (PM)		2	0	4,424	30	75	0	0	1.8%	0.7%	56.9	#####	562	425	70	28	4	1	6	2	62.5	73.1	80.3	-1.8	55.1	48.9	52.0	57.4	52.1 4	41.3 4	11.8 52	2.8 38.9	39.4	42.7	45.5
Cumulative plus Project (AM)		2	0	6,368	30	75	0	0	1.8%	0.7%	58.4	#####	809	611	100	40	6	1	9	4	62.5	73.1	80.3	-1.8	56.6	50.4	53.6	59.0	53.7	42.8 4	3.4 54	4.4 40.5	41.0	44.3	47.1
Cumulative plus Project (PM)		2	0	4,424	30	75	0	0	1.8%	0.7%	56.9	#####	562	425	70	28	4	1	6	2	62.5	73.1	80.3	-1.8	55.1	48.9	52.0	57.4	52.1 4	41.3 4	1.8 52	2.8 38.9	39.4	42.7	45.5
Williams Drive s/o Gonzales																																			
Existing (AM)		2	0	5,584	30	75	0	0	1.8%	0.7%	57.9	#####	709	536	88	35	5	1	8	3	62.5	73.1	80.3	-1.8	56.1	49.9	53.0	58.5	53.1 4	42.3 4	2.8 53	3.8 39.9	40.4	43.8	46.5
Existing (PM)		2	0	5,472	30	75	0	0	1.8%	0.7%	57.8			525	86	34	5	1	7	3	62.5	73.1	80.3	-1.8	56.0	49.8	52.9	58.4	53.0 4	42.2 4	2.7 53	3.7 39.8	40.3	43.7	46.4
Existing plus Project (AM)		2	0	5,584	30	75	0	0	1.8%	0.7%	57.9	#####	709	536	88	35	5	1	8	3	62.5	73.1	80.3	-1.8	56.1	49.9	53.0	58.5	53.1	42.3 4	2.8 53	3.8 39.9	40.4	43.8	46.5
Existing plus Project (PM)		2	0	5,472	30	75	0	0	1.8%	0.7%	57.8	#####	695	525	86	34	5	1	7	3	62.5	73.1										3.7 39.8		43.7	46.4
Cumulative (AM)		2	0	5,584	30	75	0	0	1.8%	0.7%	57.9	#####		536	88	35	5	1	8	3	62.5	73.1	80.3	-1.8	56.1	49.9	53.0	58.5	53.1 4	42.3 4	2.8 53	3.8 39.9	40.4	43.8	46.5
Cumulative (PM)		2	0	5,472	30	75	0	0	1.8%	0.7%	57.8		695	525	86	34	5	1	7	3		73.1										3.7 39.8			
Cumulative plus Project (AM)		2	0	5,584	30	75	0	0	1.8%	0.7%	57.9	#####		536	88	35	5	1	8													3.8 39.9			
Cumulative plus Project (PM)		2	0	5,472	30	75	0	0	1.8%	0.7%	57.8	#####	695	525	86	34	5	1	7	3	62.5	73.1	80.3	-1.8	56.0	49.8	52.9	58.4	53.0 4	42.2 4	2.7 53	3.7 39.8	40.3	43.7	46.4
Gonzales Road e/o Williams																																			
Existing (AM)		6	15	16,176	40	75	0	0	1.8%	0.7%	65.5	##### #	#####		255	101	15	3	22													2.3 48.7			
Existing (PM)		6	15	14,000	40	75	0	0	1.8%	0.7%	64.9	##### #	#####			87	13	3	19													1.7 48.1			
Existing plus Project (AM)		6	15	16,376	40	75	0	0	1.8%	0.7%	65.5	##### #	#####		258	102	15	3	22	-												2.4 48.8			
Existing plus Project (PM)		6	15	14,200	40	75	0	0	1.8%	0.7%	64.9	##### #	mmm		223	89	13	3	19	-												1.7 48.2			
Cumulative (AM)		6	15	30,624	40	75	0	0	1.8%	0.7%	68.3	##### #		####	482	191	28	6	41													5.1 51.5			
Cumulative (PM)		6	15	27,360	40	75	0	0	1.8%	0.7%	67.8	##### #			431	171	25	5	37													4.6 51.0			
Cumulative plus Project (AM)		6	15	30,824	40	75	0	0	1.8%	0.7%	68.3	##### #				192	28	6	42													5.1 51.5			
Cumulative plus Project (PM)		6	15	27,560	40	75	0	0	1.8%	0.7%	67.8	##### #	#####	#####	434	172	25	5	37	16	67.4	76.3	81.2	-1.2	67.2	59.4	30.2	68.6	64.2 5	51.8 5	60.0 64	4.6 51.0	49.9	50.9	55.4
Gonzales Road w/o Williams		_					_	_										_		_															
Existing (AM)		6	15	16,032	40	75	0	0	1.8%	0.7%	65.5	##### #			252	100	15	3	22	-												2.3 48.7			
Existing (PM)		6	15	14,664	40	75	0	0	1.8%	0.7%	65.1	##### #				91	13	3	20													1.9 48.3			
Existing plus Project (AM)		6	15	16,232	40	75	0	0	1.8%	0.7%	65.5	##### #			255	101	15	3	22													2.3 48.7			
Existing plus Project (PM)		6	15	15,296	40	75	0	0	1.8%	0.7%	65.3	##### #	#####	#####	241	95	14	3	21	9										49.2 4					
Cumulative (AM)		6	15	30,480	40	75	0	0	1.8%	0.7%	68.2	##### #	#####	##### ·		190	28	6	41			76.3				59.8				52.2 5					
Cumulative (PM)		6	15	28,024	40	75	0	0	1.8%	0.7%	67.9	##### #	mmm		441	1/5	25	6	38				81.2							51.8 5		4.7 51.1			
Cumulative plus Project (AM)		6	15	30,680	40	75	0	0	1.8%	0.7%	68.3	##### #			483	191	28	6	42													5.1 51.5			
Cumulative plus Project (PM)		6	15	28,224	40	75	0	0	1.8%	0.7%	67.9	##### #	11111111	11111111	444	176	26	6	38	16	67.4	76.3	81.2	-1.2	67.3	59.5	oU.3	68.7	64.3 5	51.9	O.1 64	4.7 51.1	50.0	51.1	55.5

⁽¹⁾ Alpha Factor: Coefficient of absorption relating to the effects of the ground surface. An alpha factor of 0 indicates that the site is an acoustically "hard" site such as aspalt. An alpha factor of 0.5 indicates that the site is an acoustically "soft" site such as vegetative ground cover.

Assumed 24-Hour Traffic Distribution:	Day	Evening	Night
Total ADT Volumes	77.70%	12.70%	9.60%
Medium-Duty Trucks	87.43%	5.05%	7.52%
Heavy-Duty Trucks	89.10%	2.84%	8.06%

Droject Name					ray (Da	۱۵۱		ı	1 1		If Dook Hour - 60	/ of ADT Coolin	a Fastor - 16 66		1	
Project Name	la als I la con Malcona				rev. (Da	te)					If Peak Hour = 69					
Weekday AM/PM P	eak Hour volume	98									If Peak Hour = 79			0		
											If Peak Hour = 89	6 of ADT, Scalin	ig Factor = 12.5	4		
Intersection:	9										If Peak Hour = 99			1		
Lombart Street	and Gonzales Ro	ad									If Peak Hour = 10	% of ADT, Scali				
													ADT			
				bard St	treet						Road	Lombar			es Road	
			Southbound								Leg	North of	South of	East of	West of	
				<u>right</u>	through	<u>left</u>					Cross Street	Gonzale	es Road	Lombai	rd Street	
			Existing (AM)	192	29	73					Existing (AM)	4,296.0	4,656.0	13,864.0	16,544.0	
			Existing (PM)	39	15	29					Existing (PM)	2,984.0	5,336.0	12,040.0	14,008.0	
			Existing + Project	202	29	83					Existing + Projec	4,704.0	4,656.0	14,072.0	16,744.0	
			Existing + Project	58	15	50					Existing + Projec	3,400.0	5,336.0	12,256.0	14,208.0	
			Cumulative (AM)	202	29	82					Cumulative (AM)	4,608.0	4,656.0	28,368.0	31,072.0	
			Cumulative (PM)	47	15	39					Cumulative (PM)	3,248.0	5,336.0	25,656.0	27,616.0	
Eastbound			Cumulative + Pro	212	29	92	Westbound				Cumulative + Pro	5,016.0	4,656.0	28,576.0	31,272.0	
	left through	right	Cumulative + Pro	66	15	60		right	through	left	Cumulative + Pro	3,664.0	5,336.0	25,872.0	27,816.0	
Existing (AM)	146 537	117					Existing (AM)	35	895	115				•		
Existing (AM) Existing (PM)	178 733	208					Existing (PM)	55	447	156						
g Existing + Proje	161 537	117					Existing + Project	51	895	115						
Existing + Projection Existing + Projection Cumulative (AM	184 733	208					Existing + Project	61	447	156						
Cumulative (AM	1) 157 1,178	117					Cumulative (AM		2,049	115						
Cumulative (PM	1) 186 2,058	208					Cumulative (PM	62	807	156						
Cumulative + P		117					Cumulative + Pr	60	2,049	115						
Cumulative + P	r 192 2058	208	Northbound				Cumulative + Pr	68	807	156						
				<u>left</u>	through	right										
			Existing (AM)	181	62	78										
			Existing (PM)	146	57	85										
			Existing + Project	181	62	78										
			Existing + Project	146	57	85										
			Cumulative (AM)	181	62	78										
			Cumulative (PM)	146	57	85										
			Cumulative + Pro	181	62	78										
			Cumulative + Pro	146	57	85										
				-												
							1	1								

2 NOI SE LEVEL CONTOURS - Existing Plus Project Weekday Off-Site ADT Volumes

												– Traffi	ic Volu	mes							Ref. Energy	/ Level	s Dist	Ld			Le			Ln	1		
					Design	Dist. from		Barrier	Vehic	leMix																							
ROADWAY NAME			Median	ADT	Speed	Center to A	Alpha	Attn.	Medium	Heavy	dB(A)	Day	Eve	Night	MTd	HTd I	MTe I	НТе	MTn	HTn	A MT	HT	Adj	Α	MT I	HT To	ıtal A	MT	HT	Total A	MT	HT	Total
Segment	Land Use	Lanes	Width	Volume	(mph)	Receptor Fa	ctor (1	dB(A)	Trucks	Trucks	CNEL	_		-																			
Lombart Street n/o Gonzales																																	
Existing (AM)	1	2	5	4,296	30	75	0	0	1.8%	0.7%	56.7	#####	546	412	68	27	4	1	6	2	62.5 73.1	80.3	-1.8	54.9	48.7	51.9 5	7.3 52	2.0 41.	2 41.7	52.7 3	8.8 39	.3 42.6	ô 45.4
Existing (PM)		2	5	2,984	30	75	0	0	1.8%	0.7%	55.2	#####	£ 379	286	47	19	3	1	4	2	62.5 73.1	80.3	-1.8	53.4	47.2	50.3 5	5.7 50).4 39.	6 40.1	51.1 37	7.2 37	.7 41.0	ე 43.8
Existing plus Project (AM)		2	5	4,704	30	75	0	0	1.8%	0.7%	57.1	#####	597	452	74	29	4	1	6	3	62.5 73.1	80.3	-1.8	55.3	49.1	52.3 5	7.7 52	2.4 41.	5 42.1	53.1 3	9.2 39	.7 43.0	0 45.8
Existing plus Project (PM)		2	5	3,400	30	75	0	0	1.8%	0.7%	55.7	#####	# 432	326	54	21	3	1	5	2	62.5 73.1	80.3	-1.8	53.9	47.7	50.8 5	6.3 50).9 40.	1 40.7	51.7 37	7.8 38	.3 41.6	ô 44.3
Cumulative (AM)		2	5	4,608	30	75	0	0	1.8%	0.7%	57.0	#####	585	442	73	29	4	1	6	3	62.5 73.1	80.3	-1.8	55.2	49.0	52.2 5	7.6 52	4.3 41.	5 42.0	53.0 39	9.1 39	.6 42.9	9 45.7
Cumulative (PM)		2	5	3,248	30	75	0	0	1.8%	0.7%	55.5	#####	£ 412	312	51	20	3	1	4	2	62.5 73.1	80.3	-1.8	53.7	47.5	50.6 5	6.1 50	J.8 39.	9 40.5	51.5 37	7.6 38	.1 41.4	4 44.1
Cumulative plus Project (AM	<u>.</u>	2	5	5,016	30	75	0	0	1.8%	0.7%	57.4	#####	£ 637	482	79	31	5	1	7	3	62.5 73.1	80.3	-1.8	55.6	49.4	52.5 5	8.0 52	4.6 41.	8 42.4	53.3 39	9.4 40	.0 43.3	3 46.0
Cumulative plus Project (PM	L	2	5	3,664	30	75	0	0	1.8%	0.7%	56.0	#####	[‡] 465	352	58	23	3	1	5	2	62.5 73.1	80.3	-1.8	54.3	48.0	51.2 5	6.6 51	.3 40.	5 41.0	52.0 3	8.1 38	.6 41.9	9 44.7
Lombart Street s/o Gonzales																																	
Existing (AM)		2	0	4,656	30	75	0	0	1.8%	0.7%	57.1	#####	£ 591	447	73	29	4	1	6	3	62.5 73.1	80.3	-1.8							53.0 39			
Existing (PM)		2	0	5,336	30	75	0	0	1.8%	0.7%	57.7	#####	£ 678	512	84	33	5	1	7	3	62.5 73.1	80.3	-1.8	55.9	49.7	52.8 5	8.3 52	1.9 42.	1 42.6	53.6 39	9.7 40	.2 43.6	3 46.3
Existing plus Project (AM)		2	0	4,656	30	75	0	0	1.8%	0.7%	57.1	#####	591	447	73	29	4	1	6	3	62.5 73.1	80.3	-1.8	55.3	49.1	52.2 5	7.7 52	41.	5 42.0	53.0 39	9.1 39	.6 43.0	J 45.7
Existing plus Project (PM)		2	0	5,336	30	75	0	0	1.8%	0.7%	57.7	#####	£ 678	512	84	33	5	1	7	3	62.5 73.1	80.3	-1.8	55.9	49.7	52.8 5	8.3 52	.9 42.	1 42.6	53.6 39	9.7 40	.2 43.6	3 46.3
Cumulative (AM)		2	0	4,656	30	75	0	0	1.8%	0.7%	57.1	#####	591	447	73	29	4	1	6	3	62.5 73.1	80.3	-1.8	55.3	49.1	52.2 5	7.7 52	4.3 41.	5 42.0	53.0 39	9.1 39	.6 43.0	J 45.7
Cumulative (PM)		2	0	5,336	30	75	0	0	1.8%	0.7%	57.7	#####	£ 678	512	84	33	5	1	7	3	62.5 73.1	80.3								53.6 39			
Cumulative plus Project (AM	<u>.</u>	2	0	4,656	30	75	0	0	1.8%	0.7%	57.1	#####	591	447	73	29	4	1	6	3	62.5 73.1									53.0 39			
Cumulative plus Project (PM		2	0	5,336	30	75	0	0	1.8%	0.7%	57.7	#####	£ 678	512	84	33	5	1	7	3	62.5 73.1	80.3	-1.8	55.9	49.7	52.8 5	8.3 52	.9 42.	1 42.6	53.6 39	9.7 40	.2 43.6	3 46.3
Gonzales Road e/o Lombart																																	
Existing (AM)		6	15	13,864	40	75	0	0	1.8%	0.7%	64.8			#####	218	86	13	3	19	8	67.4 76.3												
Existing (PM)		6	15	12,040	40	75	0	0	1.8%	0.7%	64.2	#####	#####	#####	189	75	11	2	16	7	67.4 76.3	81.2	-1.2	63.6	55.8	56.6 6	5.0 60	1.6 48.	2 46.4	61.0 4	7.4 46	.3 47.4	4 51.8
Existing plus Project (AM)		6	15	14,072	40	75	0	0	1.8%	0.7%	64.9	#####	#####	#####	221	88	13	3	19	8	67.4 76.3	81.2	-1.2	64.3	56.4	57.3 6	5.6 61	.3 48.	9 47.1	61.7 48	8.1 47	.0 48.0	J 52.5
Existing plus Project (PM)		6	15	12,256	40	75	0	0	1.8%	0.7%	64.3	#####	#####	#####	193	76	11	2	17	7	67.4 76.3	81.2	-1.2	63.7	55.8	56.7 6	5.0 60	1.7 48.	3 46.5	61.1 47	7.5 46	.4 47.4	4 51.9
Cumulative (AM)		6	15	28,368	40	75	0	0	1.8%	0.7%	67.9	#####	#####	#####	446	177	26	6	38	16	67.4 76.3	81.2	-1.2	67.3	59.5	60.3 6	8.7 64	.4 51.	9 50.1	64.8 5	1.2 50	.0 51.	1 55.6
Cumulative (PM)		6	15	25,656	40	75	0	0	1.8%	0.7%	67.5	#####	#####	#####	404	160	23	5	35		67.4 76.3												
Cumulative plus Project (AM	<u>l</u>	6	15	28,576	40	75	0	0	1.8%	0.7%	68.0		#####	#####	450	178	26	6	39	16	67.4 76.3	81.2	-1.2	67.4	59.5	60.3 6	8.7 64	.4 51.	9 50.2	64.8 5	1.2 50	.1 51.1	1 55.6
Cumulative plus Project (PM)	1	6	15	25,872	40	75	0	0	1.8%	0.7%	67.5	#####	#####	#####	407	161	24	5	35	15	67.4 76.3	81.2	-1.2	66.9	59.1	59.9 6	3.3 64	.0 51.	5 49.7	64.4 50	0.8 49	.6 50.7	7 55.2
Gonzales Road w/o Lombart																																	
Existing (AM)		6	15	16,544	40	75	0	0	1.8%	0.7%	65.6	#####	#####	#####	260	103	15	3	22	-										62.4 48			
Existing (PM)		6	15	14,008	40	75	0	0	1.8%	0.7%	64.9	#####	#####	#####	220	87	13	3	19	8	67.4 76.3	81.2	-1.2	64.3	56.4	57.2 6	5.6 61	3 48.	8 47.1	61.7 4	8.1 47	.0 48.0	J 52.5
Existing plus Project (AM)		6	15	16,744	40	75	0	0	1.8%	0.7%	65.6	#####	#####	#####	264	104	15	3	23	9	67.4 76.3												
Existing plus Project (PM)		6	15	14,208	40	75	0	0	1.8%	0.7%	64.9	#####	#####	#####	224	89	13	3	19	8	67.4 76.3	81.2	-1.2	64.3	56.5	57.3 6	5.7 61	.4 48.	9 47.1	61.7 48	8.2 47	.0 48.	1 52.6
Cumulative (AM)		6	15	31,072	40	75	0	0	1.8%	0.7%	68.3	#####		#####	489	194	28	6	42	18		81.2		67.7			9.1 64				1.6 50		
Cumulative (PM)		6	15	27,616	40	75	0	0	1.8%	0.7%	67.8	#####	mmm	mmm	435	172	25	5	37	16	67.4 76.3			67.2		60.2 6			8 50.0				
Cumulative plus Project (AM	<u> </u>	6	15	31,272	40	75	0	0	1.8%	0.7%	68.4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	#####	mmm	492	195	28	6	42		67.4 76.3												
Cumulative plus Project (PM		6	15	27,816	40	75	0	0	1.8%	0.7%	67.9	#####	#####	#####	438	173	25	6	38	16	67.4 76.3	81.2	-1.2	67.3	59.4	60.2 6	3.6 64	.3 51.	8 50.1	64.7 5	1.1 49	.9 51.0	J 55.5

⁽¹⁾ Alpha Factor: Coefficient of absorption relating to the effects of the ground surface. An alpha factor of 0 indicates that the site is an acoustically "hard" site such as aspalt. An alpha factor of 0.5 indicates that the site is an acoustically "soft" site such as vegetative ground cover.

Assumed 24-Hour Traffic Distribution:	Day	Evening	Night
Total ADT Volumes	77.70%	12.70%	9.60%
Medium-Duty Trucks	87.43%	5.05%	7.52%
Heavy-Duty Trucks	89.10%	2.84%	8.06%

	Gonzales Road ast of West of
If Peak Hour = 8% of ADT, Scaling Factor = 12.5 Intersection:	
Intersection: 10	
Solar Drive and Gonzales Road	
ADT	
Solar Drive Road Solar Drive Southbound Leg North of South of Ea:	
Southbound Leg North of South of Ea:	
	ast of West of
right through left Cross Street Gonzales Road	Solar Drive
	,072.0 14,264.0
	,096.0 10,744.0
	,320.0 14,472.0
	,344.0 10,960.0
	,536.0 28,688.0
	,472.0 24,088.0
Eastbound Cumulative + Pr 82 36 137 Westbound Cumulative + Pr 3,856.0 4,920.0 31,	,784.0 28,896.0
	,720.0 24,304.0
Existing (AM) 110 727 59 Existing (AM) 94 741 193 Existing (PM) 126 540 55 Existing (PM) 171 573 300	
Existing (PM) 126 540 55 Existing (PM) 171 573 300	
g Existing + Project 110 737 59 Existing + Project 97 757 193	
Existing + Project 126 561 55	
Cumulative (AM) 110 1,372 59 Cumulative (AM) 97 1,899 193	
8 Cumulative (PM 126 1,870 55 Cumulative (PM 173 911 300	
Cumulative + Pr 110 1,382 59 Cumulative + Pr 100 1,915 193	
Cumulative + Pr 126 1891 55 Northbound Cumulative + Pr 175 917 300	
left through right	
Existing (AM) 64 17 246	
Existing (PM) 28 37 108	
Existing + Project 64 17 246	
Existing + Project 28 37 108	
Cumulative (AM 64 17 246	
Cumulative (PM 28 37 108	
Cumulative + Pri 64 17 246	
Cumulative + Pr 28 37 108	

2 NOI SE LEVEL CONTOURS - Existing Plus Project Weekday Off-Site ADT Volumes

-												_ Traff	ic Volu	mes							Ref. Energy	Level	s Dist	Ld			Le	3			Ln			
					Design	Dist. from		Barrier	Vehic	leMix																								
ROADWAY NAME			Median	ADT	Speed	Center to A	l pha	Attn.	Medium	Heavy	dB(A)	Day	Eve	Night	MTd	HTd I	MTe I	НТе	MTn I	HTn	A MT	HT	Adj	Α	MT I	нт то	otal A	М٦	т нт	Total .	A 1	ит н	IT To	otal
Segment	Land Use	Lanes	Width	Volume	(mph)	Receptor Fa	tor (1	dB(A)	Trucks	Trucks	CNEL	_ ′		·									•											
Solar Drive n/o Gonzales																																		
Existing (AM)		2	5	3,776	30	75	0	0	1.8%	0.7%	56.2	#####	480	362	59	24	3	1	5	2	62.5 73.1	80.3	-1.8	54.4	48.2	51.3 5	6.8 5	1.4 40).6 41.1	52.1	38.2	38.7	12.1 4	4.8
Existing (PM)		2	5	3,504	30	75	0	0	1.8%	0.7%	55.9	#####	445	336	55	22	3	1	5	2	62.5 73.1	80.3	-1.8	54.1	47.9	51.0 5	6.4 5	1.1 40	0.3 40.8	3 51.8	37.9	38.4	11.7 4	4.5
Existing plus Project (AM)		2	5	3,816	30	75	0	0	1.8%	0.7%	56.2	#####	485	366	60	24	3	1	5	2	62.5 73.1	80.3	-1.8	54.4	48.2	51.3 5	6.8 5	1.5 40	0.6 41.2	2 52.2	38.3	38.8	42.1 4	4.8
Existing plus Project (PM)		2	5	3,536	30	75	0	0	1.8%	0.7%	55.9	####	449	339	56	22	3	1	5	2	62.5 73.1	80.3	-1.8	54.1	47.9	51.0 5	6.5 5	1.1 40	0.3 40.9	51.8	37.9	38.4	11.8 4	4.5
Cumulative (AM)		2	5	3,816	30	75	0	0	1.8%	0.7%	56.2	#####	485	366	60	24	3	1	5	2	62.5 73.1	80.3	-1.8	54.4	48.2	51.3 5	6.8 5	1.5 40	0.6 41.2	2 52.2	38.3	38.8	1 2.1 4	4.8
Cumulative (PM)		2	5	3,536	30	75	0	0	1.8%	0.7%	55.9	####	449	339	56	22	3	1	5	2	62.5 73.1	80.3	-1.8	54.1	47.9	51.0 5	6.5 5	1.1 40	0.3 40.9	€ 51.8	37.9	38.4	11.8 4	4.5
Cumulative plus Project (AM)	<u>.</u>	2	5	3,856	30	75	0	0	1.8%	0.7%	56.3	#####	490	370	61	24	4	1	5	2	62.5 73.1	80.3	-1.8	54.5	48.3	51.4 5	6.9 5	1.5 40	0.7 41.2	2 52.2	38.3	38.8	12.2 4	4.9
Cumulative plus Project (PM)	L	2	5	3,568	30	75	0	0	1.8%	0.7%	55.9	#####	453	343	56	22	3	1	5	2	62.5 73.1	80.3	-1.8	54.1	47.9	51.1 5	6.5 5	1.2 40).3 40.9	€ 51.9	38.0	38.5	11.8 4	4.5
Solar Drive s/o Gonzales																																		
Existing (AM)		2	5	4,920	30	75	0	0	1.8%	0.7%	57.3	#####	625	472	77	31	4	1	7	3	62.5 73.1	80.3	-1.8						1.7 42.3					
Existing (PM)		2	5	4,328	30	75	0	0	1.8%	0.7%	56.8	#####	550	415	68	27	4	1	6	2	62.5 73.1	80.3	-1.8	55.0	48.8	51.9 5	7.4 5	2.0 41	1.2 41.7	7 52.7	38.8	39.3	12.7 4	5.4
Existing plus Project (AM)		2	5	4,920	30	75	0	0	1.8%	0.7%	57.3	#####	625	472	77	31	4	1	7	3	62.5 73.1	80.3	-1.8	55.5	49.3	52.5 5	7.9 5	2.6 41	1.7 42.3	3 53.3	39.4	39.9	13.2 4	5.9
Existing plus Project (PM)		2	5	4,328	30	75	0	0	1.8%	0.7%	56.8	####	550	415	68	27	4	1	6	2	62.5 73.1	80.3							1.2 41.7					
Cumulative (AM)		2	5	4,920	30	75	0	0	1.8%	0.7%	57.3			472	77	31	4	1	7	3		80.3							1.7 42.3					
Cumulative (PM)		2	5	4,328	30	75	0	0	1.8%	0.7%	56.8	#####	000	415	68	27	4	1	6	2		80.3							1.2 41.7					
Cumulative plus Project (AM)	<u> </u>	2	5	4,920	30	75	0	0	1.8%	0.7%	57.3		625	472	77	31	4	1	7	3	62.5 73.1								1.7 42.3					
Cumulative plus Project (PM)	1	2	5	4,328	30	75	0	0	1.8%	0.7%	56.8	####	550	415	68	27	4	1	6	2	62.5 73.1	80.3	-1.8	55.0	48.8	51.9 5	7.4 5	2.0 41	1.2 41.7	52.7	38.8	39.3	12.7 4	5.4
Gonzales Road e/o Solar																																		
Existing (AM)		6	15	17,072	40	75	0	0	1.8%	0.7%	65.7	#####	#####		269	106	16	3	23		67.4 76.3													
Existing (PM)		6	15	14,096	40	75	0	0	1.8%	0.7%	64.9	#####	mmm	mmm	222	88	13	3	19		67.4 76.3													
Existing plus Project (AM)		6	15	17,320	40	75	0	0	1.8%	0.7%	65.8	mmm	#####	#####	273	108	16	3	23	10		81.2							9.8 48.0					
Existing plus Project (PM)		6	15	14,344	40	75	0	0	1.8%	0.7%	65.0	#####	mmm	#####	226	89	13	3	19	8									8.9 47.2					
Cumulative (AM)		6	15	31,536	40	75	0	0	1.8%	0.7%	68.4	#####	#####	#####	496	197	29	6	43		67.4 76.3													
Cumulative (PM)		6	15	27,472	40	75	0	0	1.8%	0.7%	67.8	#####	#####	#####	432	171	25	5	37		67.4 76.3													
Cumulative plus Project (AM)	<u>.</u>	6	15	31,784	40	75	0	0	1.8%	0.7%	68.4		#####		500	198	29	6	43		67.4 76.3													
Cumulative plus Project (PM) Gonzales Road w/o Solar	1	6	15	27,720	40	75	0	0	1.8%	0.7%	67.8	#####	#####	#####	436	173	25	6	38	16	67.4 76.3	81.2	-1.2	67.2	59.4	60.2 6	8.6 64	4.3 51	1.8 50.0) 64.7	51.1	49.9	i1.0 5	.5.5
		_					_	_										_		_														
Existing (AM)		6	15	14,264	40	75	0	0	1.8%	0.7%	65.0		#####	#####	224	89	13	3	19	-									8.9 47.2					
Existing (PM)		6	15	10,744	40	75	0	0	1.8%	0.7%	63.7	####	:	#####	169	67	10	2	15		67.4 76.3													
Existing plus Project (AM)		6	15	14,472	40	75	0	0	1.8%	0.7%	65.0				228	90	13	3	20		67.4 76.3													
Existing plus Project (PM)		6	15	10,960	40	75	0	0	1.8%	0.7%	63.8	####		#####	172	68	10	2	15										7.8 46.0					
Cumulative (AM)		б	15	28,688	40	75 75	0	0	1.8%	0.7%	68.0	####		######	451	179	26	6	39	16		81.2		67.4					1.9 50.2					
Cumulative (PM)	l	б	15	24,088	40	75	0	0	1.8%	0.7%	67.2		:	mmm		150	22	5	33	14	67.4 76.3								1.2 49.4					
Cumulative plus Project (AM)	_	б	15	28,896	40	75 75	0	0	1.8%	0.7%	68.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	nnnn	mmm	455	180	26	б	39		67.4 76.3													
Cumulative plus Project (PM)		6	15	24,304	40	/5	υ.	. 0	1.8%	0.7%	67.3	********	#####	11111111	382	152	22	5	33	14	67.4 76.3	81.2	-1.2	66.7	58.8	59.6	8.0 6	3.7 51	1.2 49.5) 64.1	50.5	49.4	JU.4 5	4.9

⁽¹⁾ Alpha Factor: Coefficient of absorption relating to the effects of the ground surface. An alpha factor of 0 indicates that the site is an acoustically "hard" site such as aspalt. An alpha factor of 0.5 indicates that the site is an acoustically "soft" site such as vegetative ground cover.

Assumed 24-Hour Traffic Distribution:	Day	Evening	Night
Total ADT Volumes	77.70%	12.70%	9.60%
Medium-Duty Trucks	87.43%	5.05%	7.52%
Heavy-Duty Trucks	89 10%	2 84%	8.06%

Report dat 9/18/2023 Case Descr Site Preparation

---- Receptor #1 ----

Baselines (dBA)

Descriptior Land Use Daytime Evening Night
At 25 feet Residential 65 65 65

Equipment

			Spec		Actual	Receptor	Estimated
	Impact		Lmax		Lmax	Distance	Shielding
Description	Device	Usage(%)	(dBA)		(dBA)	(feet)	(dBA)
Dozer	No	40)		81.7	25	0
Dozer	No	40)		81.7	25	0
Dozer	No	40)		81.7	25	0
Tractor	No	40)	84		25	0
Tractor	No	40)	84		25	0
Tractor	No	40)	84		25	0
Tractor	No	40)	84		25	0

Resu	lts
------	-----

	Calculated (dBA)	Noise L	imits (dBA)					Noise L	imit Exceeda	ince (dBA)		
		Day		Evening		Night		Day		Evening		Night	
Equipment	*Lmax Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq
Dozer	87.7	83.7 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dozer	87.7	83.7 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dozer	87.7	83.7 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tractor	90	86 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tractor	90	86 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tractor	90	86 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tractor	90	86 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total	90	93.6 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

^{*}Calculated Lmax is the Loudest value.

Lockwood Apartments Mean propagation Leq - Site Preparation

Source type	Time	Li	R'w	L'w	Lw	I or A	KI	KT	DO	S	Adiv	Agr	Abar	Aatm	Amisc	ADI	dLreft	Ls	Cmet	dLw	ZR	Lr	
	slice	dB(A)	dB	dB(A)	dB(A)	m,mª	dB	dB	dB	m	dB	dB	dB	dB	dB	dB	dB(A)	dB(A)	dB	dB	dB	dB(A)	
Receiver 196	00 Outlet	Center D	rive FI	G dB(A)	Lr,lim	dB(A) L	r,lim dB(A) Lr, lis	m dB(A)	Leg-1ho	our dB(A)	Ldn 71	.3 dB(A)	Leg,d 74	4.3 dB(A)	Leq.e d	B(A) Leg	n dB(A)	Leg-1ho	our 74.7 dB	(A)		La constant de la con
Area	Leq-1ho ur			93.6	136.8	20697.5	0.0	0.0	3	289.12	-60.2	-4.6	-1.1	-0.6		0.0	1.4	74.7	0.0	0.0	0.0	74.7	
Receiver 190	00 Outlet	Center D	rive FI	F2 dB(A	Lr,lim	dB(A)	Lr,lim dB	(A) Lr.	im dB(A	Leq-1h	nour dB(A	Ldn 7	2.1 dB(A)	Leg,d 7	5.1 dB(A)	Leq.e	dB(A) Le	q,n dB(A)	Leq-1h	our 75.5 di	B(A)		
Area	Leq-1ho ur			93.6	136.8	20897.5	0.0	0.0	3	289.15	-60.2	-4.4	-1.0	-0,6	£	0.0	1.8	75.5	0,0	0.0	0.0	75.5	
Receiver 190	00 Outlet	Center D	rive FI	F3 dB(A) Lr.lim	dB(A)	Lr, lim dB	(A) Lr,	im dB(A	Leq-1	nour dB(A	Ldn 7	2.6 dB(A)	Leg,d 7	5.6 dB(A)	Leq.e	dB(A) Le	q,n dB(A)	Leq-1h	our 76.0 d	B(A)		
Area	Leq-1ho ur		32 73	93.6	136.8	20697.5	0.0	0.0	3	289.20	-60.2	-4.2	-0.6	-0.6		0.0	1.8	76.0	0.0	0.0	0.0	76.0	
Receiver 190	00 Outlet	Center D	rive FI	F4 dB(4) Lr,lim	dB(A)	Lr,lim dB	(A) Lr,i	im dB(A	Leq-1	nour dB(A	Ldn 7	1.0 dB(A)	Leq.d 7	4.0 dB(A)	Leq.e	dB(A) Le	q.n dB(A)	Leq-1h	our 74.4 d	B(A)	20	S ₁ :
Area	Leq-1ho ur			93,6	138.8	20697.5	0.0	0.0	3	289.29	-60.2	-4.0	-0.8	-0.6		0.0	0.0	74,4	0.0	0.0	0.0	74.4	
Receiver 202	24 Outlet	Center D	rive FI	G dB(A)	Lr,lim	dB(A) L	r,lim dB(A) Lr, lie	m dB(A)	Leq-1h	our dB(A)	Ldn 71	.5 dB(A)	Leq.d 74	4.5 dB(A)	Leq.e d	B(A) Leq	n dB(A)	Leg-Tho	our 74.9 dB	(A)		to.
Area	Leq-1ho ur	4		93,6	136.8	20897.5	0.0	0.0	3	233.28	-58.3	-4.8	-1.5	-0.4		0.0	0.0	74.9	0.0	0.0	0.0	74.9	
Receiver 220	01 Outlet	Center D	rive, Cali	fornia Lut	heran Un	iversity	FIG d	iB(A) Li	r, lim dB(A) Lr,lin	dB(A) L	r,fim di	B(A) Leq	-1hour di	B(A) Ldn	83.7 dB(A) Leq.d	86.7 dB(A) Leq,e	dB(A) L	eq,n dB	A) Leg-1	1hour 87.1 dB(A)
Area	Leq-1ho ur		8 X	93.6	138.8	20697.5	0.0	0.0	3	75.09	-48.5	-3.5	-0.5	-0.1		0.0	0.0	87.1	0.0	0.0	0.0	87.1	
Receiver 22	11 E. Go	nzales Ro	ad, Pacif	ic Senior	Living F	FIG dB	(A) Lr, lin	n dB(A)	Lr,im	dB(A) L	r,lim dB(A	() Leq-	Thour dB	A) Ldn	69.0 dB(A) Legd	72.0 dB(A) Lege	dB(A) L	eq.n dB(A) Leq-1	hour 72.4	dB(A)
Area	Leq-1ho ur			93.6	136.8	20697.5	0.0	0.0	3	334.92	-61.5	-4.6	-0.8	-0,6	ŧ.	0.0	0.0	72.4	0,0	0.0	0.0	72.4	
Receiver 22	11 E. Gor	nzales Ro	ad, Pacif	ic Senior	Living F	FIF2 di	B(A) Lr, i	im dB(A) Lr,lim	dB(A)	Lr,lim dB(A) Leq	-1hour dB	(A) Ldn	69.2 dB(/	A) Leq.d	72.2 dB(A	A) Leq.e	dB(A) L	Leq,n dB(A	A) Leg-1	hour 72.6	3 dB(A)
Area	Leq-1ho ur		3g	93.6	135.8	20697.5	0.0	0.0	3	334.94	-81,5	-4.5	-0.6	-0.6		0.0	0.0	72.6	0.0	0.0	0.0	72.6	
Receiver 221	11 E. Go	nzales Ro	ad, Pacif	ic Senior	Living F	FIF3 dE	B(A) Lr.I	im dB(A) Lr.lim	dB(A)	Lr,lim dB(A) Leq	-thour dB	(A) Ldn	69.6 dB(/	A) Leq.d	72.6 dB(A	A) Leq.e	dB(A) L	.eq,n dB(A	A) Leq-1	hour 72.9	9 dB(A)
Area	Leq-1ho ur			93,6	136.8	20897.5	0.0	0.0	3	334.98	-61.5	-4.3	-0.4	-0.8		0.0	0.0	72.9	0.0	0.0	0.0	729	ey alter
Receiver 22	11 E. Gor	nzales Ro	ad, Pacif	ic Senior	Living F	FIF4 dE	B(A) Lr,f	im dB(A) Lr,lim	dB(A)	Lr,fm dB(A) Leq	-1hour dB	(A) Ldn	69.7 dB(/	A) Leq,d	72,7 dB(/	A) Leq.e	dB(A) 1	Leq,n dB(/	4) Leq-1	hour 73.	1 dB(A)
Area	Leq-1ho ur		04 0	93.6	136.8	20897.5	0.0	0.0	3	335.04	-61.5	-4.2	-0.3	-0.6		0.0	0.0	73.1	0.0	0.0	0.0	73.1	
Receiver Ou	tlet Cent	er Drive 1	902 FI	G dB(A)	Lr,lim	dB(A) L	r,lim dB(A) Lr, li	m dB(A)	Leq-1h	our dB(A)	Ldn 72	1.1 dB(A)	Leq.d 75	5.1 dB(A)	Leg,e d	B(A) Leg	in dB(A)	Leg-1ho	our 75.5 dB	(A)		

Lockwood Apartments Mean propagation Leq - Site Preparation

10

Source type	Time slice	и	R'w	Lw	Lw	I or A	KI	KT	DO	S	Adiv	Agr	Abar	Aatm	Amisc	ADI	dLeft	Ls	Cmet	dLw	ZR	Lr	
5	Selen.	dB(A)	dB	dB(A)	dB(A)	m,mª	dB	dB	dB	m	dB	dB	dB	dB	dB	dB	dB(A)	dB(A)	dB	dB	dB	dB(A)	
Area	Leq-1ho ur			93,6	136.8	20697.5	0.0	0.0	3	253.55	-59.1	-4.6	-0.2	-0.5		0.0	0.0	75.5	0.0	0.0	0.0	75.5	

Meridian Consultants LLC

9/18/2023 Report date: Case Description: Grading

---- Receptor #1 ----

Baselines (dBA)

Description Land Use Daytime Evening Night At 25 feet 65 65 65 Residential

Equipment

		-9	aipincin	•		
		Sp	ec	Actual	Receptor	Estimated
	Impact	Lm	ıax	Lmax	Distance	Shielding
Description	Device	Usage(%) (dE	3A)	(dBA)	(feet)	(dBA)
Excavator	No	40		80.7	25	0
Grader	No	40	85		25	0
Dozer	No	40		81.7	25	0
Tractor	No	40	84		25	0
Tractor	No	40	84		25	0
Tractor	No	40	84		25	0

Results

	Calculated (dBA)	Noise L	imits (dBA)					Noise L	imit Exceeda	ance (dBA)		
		Day		Evening		Night		Day		Evening		Night	
Equipment	*Lmax I	_eq Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq
Excavator	86.7	82.8 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Grader	91	87 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dozer	87.7	83.7 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tractor	90	86 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tractor	90	86 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tractor	90	86 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tot	al 91	93.3 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

^{*}Calculated Lmax is the Loudest value.

Lockwood Apartments Mean propagation Leq - Grading

Source type	Time slice	Li	R'w	Lw	Lw	I or A	KI	KT	DO	S	Adiv	Agr	Abar	Aatm	Amisc	ADI	dLreft	Ls	Cmet	dLw	ZR	Lr	
	31102	dB(A)	dB	dB(A)	dB(A)	m,mª	dB	dB	dB	m	dB	dB	dB	dB	dB	dB	dB(A)	dB(A)	dB	dB	dB	dB(A)	
Receiver 190	00 Outlet	Center D	rive FI	G dB(A)	Lr,lim	dB(A) L	r,lim dB(A) Lr,lin	n dB(A)	Leq-1ho	our dB(A)	Ldn 71	.0 dB(A)	Leq,d 7	1.0 dB(A)	Leq,e d	B(A) Leo	n dB(A)	Leq-1ho	our 74.4 dE	B(A)		
Area	Leq-1ho ur		2 2	93.3	138.5	20697.5	0.0	0.0	3	289.12	-60.2	-4.6	-1.1	-0.6		0.0	1.4	74.4	0.0	0.0	0.0	74.4	
Receiver 190	00 Outlet	Center D	rive FI	F2 dB(A	Lr,lim	dB(A)	Lr,lim dB	(A) Lr.I	im dB(A) Leq-1h	our dB(A) Ldn 7	1.8 dB(A)	Leg,d 7	4.8 dB(A)	Leq.e	dB(A) Le	q,n dB(A)	Leq-1h	our 75.2 d	iB(A)		
Area	Leq-1ho ur			93.3	136.5	20897.5	0.0	0.0	3	289.15	-60.2	-4.4	-1.0	-0,6	\$	0.0	1.8	75.2	0.0	0.0	0.0	75.2	
Receiver 190	00 Outlet	Center D	rive FI	F3 dB(A) Lr,lim	dB(A)	Lr, lim dB	(A) Lr,I	im dB(A	Leq-1h	our dB(A) Ldn 7.	2.3 dB(A)	Leg,d 7	5.3 dB(A)	Leq.e	dB(A) Le	q,n dB(A	Leq-1h	our 75.7 d	iB(A)		
Area	Leq-1ho ur	ii.	32 73	93,3	138.5	20697.5	0.0	0.0	3	289.20	-60.2	-4.2	-0,6	-0.6		0.0	1.8	75.7	0.0	0.0	0.0	75.7	
Receiver 190	00 Outlet	Genter D	rive FI	F4 dB(4) Lr,lim	dB(A)	Lr,lim dB	(A) Lr,i	im dB(A) Leq-1h	our dB(A	Ldn 7	0.7 dB(A)	Leq.d 7	3,7 dB(A)	Leq,e	dB(A) Le	q,n dB(A)	Leq-1h	our 74.1 d	B(A)		5.
Area	Leq-1ho ur			93.3	138.5	20697.5	0.0	0.0	3	289.29	-60.2	-4.0	-0.8	-0.6		0.0	0.0	74.1	0.0	0.0	0.0	74.1	
Receiver 202	24 Outlet	Center D	rive FI	G dB(A)	Lr,lim	dB(A) L	r,lim dB(A) Lr, lir	n dB(A)	Leq-1ho	our dB(A)	Ldn 71	.2 dB(A)	Leq.d 74	.2 dB(A)	Leq.e d	B(A) Leo	n dB(A)	Leg-Tho	our 74.6 dE	B(A)		to.
Area	Leq-1ho ur			93.3	136.5	20897.5	0.0	0.0	3	233.28	-58.3	-4.6	-1.5	-0.4		0.0	0.0	74.6	0.0	0.0	0.0	74.6	
Receiver 220	01 Outlet	Center D	rive, Cali	fornia Lut	heran Un	iversity	FIG d	iB(A) Lr	im dB(A) Lr,lim	dB(A) L	_r,lim di	B(A) Leq	-1hour di	B(A) Ldn	83.4 dB(A) Leq.d	86.4 dB(/	A) Leq.e	dB(A) L	.eq,n dB(A) Leq-	1hour 85.8 dB(A)
Area	Leq-1ho ur		8 8	93.3	138.5	20697.5	0.0	0.0	3	75.09	-48.5	-3.5	-0.5	-0.1		0.0	0.0	86.8	0.0	0.0	0.0	86.8	
Receiver 221	11 E. Gor	nzales Ro	ad, Padf	ic Senior	Living F	G dB	(A) Lr, lir	m dB(A)	Lr,im	dB(A) L	r,lim dB(A	A) Leq-1	hour dB	(A) Ldn	88.7 dB(A) Legd	71.7 dB(A) Leq.e	dB(A) L	eq.n dB(A	A) Leq-1	hour 72.1	dB(A)
Area	Leq-1ho ur			93.3	136.5	20697.5	0.0	0.0	3	334.92	-61.5	-4.6	-0.6	-0,6	\$	0.0	0.0	72.1	0,0	0.0	0.0	72.1	
Receiver 221	11 E. Gor	nzales Ro	ad, Pacif	ic Senior	Living F	FIF2 dE	ا,تا (A)	im dB(A	Lr,lim	dB(A)	Lr,lim dB(A) Leq-	thour dB	(A) Ldn	68.9 dB(A	A) Leq.d	71.9 dB(/	A) Leq.e	dB(A) L	Leg,n dB(/	A) Leg-1	hour 72.3	3 dB(A)
Area	Leq-1ho ur		N //	93,3	138.5	20697.5	0.0	0.0	3	334.94	-81,5	-4.5	-0,6	-0.6		0.0	0.0	72.3	0.0	0.0	0.0	72.3	
Receiver 221	11 E. Gor	zales Ro	ad, Pacif	ic Senior	Living F	FF3 dE	(A) Lr.I	im dB(A	Lr,lim	dB(A)	Lr, lim dB(A) Leq-	thour dB	(A) Ldn	69.3 dB(A	A) Leg.d	72.3 dB(/	A) Leq.e	dB(A) L	Legin dB(/	A) Leg-1	hour 72.6	5 dB(A)
Area	Leq-1ho ur			93.3	138.5	20897.5	0.0	0.0	3	334.98	-61.5	-4.3	-0.4	-0.6		0.0	0.0	72.6	0.0	0.0	0.0	728	0) into 3
Receiver 221	11 E. Gor	izales Ro	ad, Pacif	ic Senior	Living F	FIF4 dE	B(A) Lr,i	im dB(A	Lr,lim	dB(A)	Lr,lim dB(A) Leq-	1hour dB	(A) Ldn	69.4 dB(A	A) Leq,d	72,4 dB(/	A) Leq.e	dB(A) L	.eq,n dB(/	A) Leq-1	hour 72.8	8 dB(A)
Area	Leq-1ho ur		C4 C3	93.3	138.5	20897.5	0.0	0.0	3	335.04	-61.5	-4.2	-0.3	-0.6		0.0	0.0	72.8	0.0	0.0	0.0	72.8	
Receiver Ou	tlet Cente	er Drive 1	902 FI	G dB(A)	Lr,lim	dB(A) L	r,lim dB(A) Lr.lin	n dB(A)	Leg-1ho	our dB(A)	Ldn 71	8 dB(A)	Leg,d 7	(A)Bb 8.	Leg,e d	B(A) Leo	in dB(A)	Leg-1ho	our 75.2 dE	B(A)		

Lockwood Apartments Mean propagation Leq - Grading

4	$\boldsymbol{\wedge}$
1	
	v
	100

ource type Time	e	Li	R'w	Lw	Lw	I or A	KI	KT	DO	S	Adiv	Agr	Abar	Aatm	Amisc	ADI	dLefi	Ls	Cmet	dLw	ZR	Lr
slice	100	dB(A)	dB	dB(A)	dB(A)	m,mª	dB	dB	dB	m	dB	dB	dB	dB	dB	dB	dB(A)	dB(A)	dB	dB	dB	dB(A)
Area Leq-1h	lho			93.3	138.5	20697.5	0.0	0.0	3	253.55	-59.1	-4.6	-0.2	-0.5		0.0	0.0	75.2	0.0	0.0	0.0	75.2

Meridian Consultants LLC

Report date: 9/18/2023
Case Description: Building Construction

---- Receptor #1 ----

Baselines (dBA)

Description Land Use Daytime Evening Night
At 25 feet Residential 65 65 65

Equipment

			Spec	Acti	ıal	Receptor	Estimated
	Impact		Lmax	Lma	ıx	Distance	Shielding
Description	Device	Usage(%)	(dBA)	(dB	۹)	(feet)	(dBA)
Crane	No	16			80.6	25	0
All Other Equipment > 5 HP	No	50	1	85		25	0
All Other Equipment > 5 HP	No	50	1	85		25	0
All Other Equipment > 5 HP	No	50	1	85		25	0
Generator	No	50	1		80.6	25	0
Tractor	No	40	1	84		25	0
Tractor	No	40	1	84		25	0
Tractor	No	40		84		25	0

Results

		Calculated (dB	A)	Noise Li	mits (dBA)					Noise L	imit Exceeda	nce (dBA)		
			Day		Evening		Night		Day		Evening		Night	
Equipment		*Lmax Led	q Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq
Crane		86.6	78.6 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
All Other Equipment > 5 HP		91	88 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
All Other Equipment > 5 HP		91	88 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
All Other Equipment > 5 HP		91	88 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Generator		86.7	83.6 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tractor		90	86 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tractor		90	86 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tractor		90	86 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Total	91	95.3 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

^{*}Calculated Lmax is the Loudest value.

Lockwood Apartments Mean propagation Leq - Building Construction

Source type		Li	R'w	Lw	Lw	I or A	KI	KT	DO	S	Adiv	Agr	Abar	Aatm	Amisc	ADI	dLefi	Ls	Cmet	dLw	ZR	Lr	
	slice	dB(A)	dB	dB(A)	dB(A)	m,mª	dB	dB	dB	m	dB	dB	dB	dB	dB	dB	dB(A)	dB(A)	dB	dB	dB	dB(A)	G-
Receiver 190	00 Outlet	Center D	rive FI	G dB(A)	Lr,lim	dB(A) L	r,lim dB(A) Lr,lin	n dB(A)	Leq-1ho	our dB(A)	Ldn 69	.1 dB(A)	Leq,d 72	2.1 dB(A)	Leq.e d	B(A) Leo	n dB(A)	Leq-1ho	ur 72.5 dB	B(A)		35
Area	Leq-1ho ur		8 8	95.3	134.0	7418.6	0.0	0.0	3	297.15	-60.5	-4.6	-0.3	-0.6		0.0	1.4	72.5	0.0	0.0	0.0	72.5	
Receiver 190	00 Outlet	Center D	rive FI	F2 dB(A	Lr,lim	dB(A)	Lr,lim dB	(A) Lr.I	m dB(A) Leq-1h	our dB(A) Ldn 6	9.8 dB(A)	Leq.d 7	2.8 dB(A)	Leq.e	dB(A) Le	q,n dB(A)	Leq-1h	our 73.2 d	B(A)		
Area	Leq-1ho ur			95.3	134.0	7418.6	0.0	0.0	3	297.18	-60.5	-4.4	-0.2	-0.6	¢.	0.0	1.9	73.2	0,0	0.0	0.0	73.2	
Receiver 190	00 Outlet	Center D	rive FI	F3 dB(A) Lr.lim	dB(A)	Lr, lim dB	(A) Lr,I	im dB(A	Leq-1	nour dB(A) Ldn 7	0.2 dB(A)	Leg,d 7	3.2 dB(A)	Leq.e	dB(A) Le	q,n dB(A)	Leq-1h	our 73.6 d	B(A)		
Area	Leq-1ho ur		32 72	95.3	134.0	7418.6	0.0	0.0	3	297.23	-60,5	-4.3	-0.1	-0.6		0.0	1.9	73.6	0.0	0.0	0.0	73.6	
Receiver 190	00 Outlet	Center D	rive FI	F4 dB(A) Lr,lim	dB(A)	Lr,lim dB	(A) Lr,i	m dB(A) Leq-1h	nour dB(A) Ldn 8	8.4 dB(A)	Leq.d 7	1.5 dB(A)	Leq.e	dB(A) Le	q,n dB(A	Leq-1h	our 71.8 d	B(A)	(d)	
Area	Leq-1ho ur			95.3	134.0	7418.6	0.0	0.0	3	297.30	-60.5	-4.1	-0.1	-0.6		0.0	0.0	71,8	0.0	0.0	0.0	71,8	
Receiver 202	24 Outlet	Center D	rive FI	3 dB(A)	Lr,lim	dB(A) L	r,lim dB(A) Lr, fir	n dB(A)	Leq-1ho	our dB(A)	Ldn 69	.3 dB(A)	Leq,d 72	2.3 dB(A)	Leq.e d	B(A) Leo	n dB(A)	Leg-Tho	ur 72.7 dE	B(A)		50 50
Area	Leq-1ho ur			95.3	134.0	7418.6	0.0	0.0	3	243.53	-58.7	-4.6	-0.5	-0.5		0.0	0.0	72.7	0.0	0.0	0.0	72.7	
Receiver 220	1 Outlet	Center D	rive, Cali	fornia Luti	heran Un	iversity	FIG d	iB(A) Lr	im dB(A) Lr,lim	dB(A) l	_r,lim dE	(A) Leq-	-1hour di	B(A) Ldh	78.4 dB(A) Leq,d	81.4 dB(/	A) Leq.e	dB(A) L	eq,n dB(A) Leq-1	1hour 81.8 dB(A)
Area	Leq-1ho ur		S - 10	95.3	134.0	7418.6	0.0	0.0	3	96.51	-50.7	-4.3	-0.1	-0.2		0.0	0.0	81.8	0.0	0.0	0.0	81.8	
Receiver 221	11 E. Gor	zales Ro	ad, Pacif	ic Senior	Living F	IG dB	(A) Lr, lir	m dB(A)	Lr,im	dB(A) L	r,lim dB(A	A) Leq-1	hour dB	A) Ldn	88.6 dB(A) Leg,d	69.6 dB(A) Lege	dB(A) L	eq,n dB(A) Leq-1	hour 70.0	dB(A)
Area	Leq-1ho ur			95.3	134.0	7418.6	0.0	0.0	3	339.92	-61.6	-4.7	-0.1	-0.7	5	0.0	0.0	70.0	0,0	0.0	0.0	70.0	
Receiver 221	11 E. Gor	zales Ro	ad, Pacif	ic Senior	Living F	FF2 dE	1,tl (A)	im dB(A	Lr,lim	dB(A)	Lr,lim dB(A) Leq-	thour dB	(A) Ldn	66.7 dB(A	A) Leq.d	69.8 dB(/	A) Leq.e	dB(A) L	.eq,n dB(/	A) Leg-1	hour 70.1	1 dB(A)
Area	Leq-1ho ur		72	95.3	134.0	7418.6	0.0	0.0	3	339.94	-61,6	-4.5	-0.1	-0.7		0.0	0.0	70.1	0.0	0.0	0.0	70.1	
Receiver 221	1 E. Gor	zales Ro	ad, Pacif	ic Senior	Living F	F3 dE	(A) Lr,1	im dB(A	Lr,lim	dB(A)	Lr,lim dB(A) Leg-	thour dB	(A) Ldn	67.0 dB(A	A) Leq.d	70.0 dB(/	A) Leq.e	dB(A) L	eq,n dB(/	A) Leg-1	hour 70.4	4 dB(A)
Area	Leq-1ho ur			95.3	134.0	7418.6	0.0	0.0	3	339.98	-61.6	-4.4	0.0	-0.7		0.0	0.0	70.4	0.0	0.0	0.0	70.4	O mixe
Receiver 221	1 E. Gor	izales Ro	ad, Pacif	ic Senior	Living F	FF4 dE	(A) Lr,i	im dB(A	Lr,lim	dB(A)	Lr,im dB(A) Leq-	1hour dB	(A) Ldn	87.1 dB(A	A) Leq,d	70.1 dB(/	A) Leq.e	dB(A) L	eq,n dB(A) Leq-1	hour 70.5	5 dB(A)
Area	Leq-1ho ur			95.3	134.0	7418.6	0.0	0.0	3	340.05	-61.6	-4.2	0.0	-0.7		0.0	0.0	70.5	0.0	0.0	0.0	70.5	10
Receiver Ou	tlet Cente	er Drive 1	902 FI	G dB(A)	Lr,lim	dB(A) L	r,lim dB(A) Lr,lin	n dB(A)	Leq-1ho	our dB(A)	Ldn 69	4 dB(A)	Leq,d 72	2.4 dB(A)	Leq,e d	B(A) Leo	in dB(A)	Leg-1ho	ur 72.8 dE	B(A)		W.

Lockwood Apartments Mean propagation Leq - Building Construction

4	
1	
	v

Source type		Ц	R'w	Lw	Lw	I or A	KI	KT	DO	S	Adiv	Agr	Abar	Aatm	Amisc	ADI	dLreft	Ls	Cmet	dLw	ZR	Lr	
5	slice	dB(A)	dB	dB(A)	dB(A)	m,m²	dB	dB	dB	m	dB	dB	dB	dB	dB	dB	dB(A)	dB(A)	dB	dB	dB	dB(A)	
Area	Leq-1ho ur		8 8	95.3	134.0	7418.6	0.0	0.0	3	254.39	-59.1	-4.6	0.0	-0.5		0.0	0.0	72.8	0.0	0.0	0.0	72.8	

Meridian Consultants LLC

Report date:	9/18/2023
Case Description:	Paving

---- Receptor #1 ----

Baselines (dBA)

Description Land Use Daytime Evening Night
At 25 feet Residential 65 65 65

Equipment

Receptor Estimated Spec Actual Lmax Distance Shielding Impact Lmax Description Device Usage(%) (dBA) (dBA) (feet) (dBA) Roller No 20 80 25

Results

		Calculated (dBA)		Noise L	imits (dBA)					Noise L	imit Exceeda	nce (dBA)		
			Day		Evening		Night		Day		Evening		Night	
Equipment		*Lmax Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq
Roller		86	79 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Total	86	79 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

^{*}Calculated Lmax is the Loudest value.

Lockwood Apartments Mean propagation Leq - Paving

Source type	Time	Li	R'w	L'w	Lw	I or A	KI	KT	DO	S	Adiv	Agr	Abar	Aatm	Amisc	ADI	dLreft	Ls	Cmet	dLw	ZR	Lr	
	slice	dB(A)	dB	dB(A)	dB(A)	m,mª	dB	dB	dB	m	dB	dB	dB	dB	dB	dB	dB(A)	dB(A)	dB	dB	dB	dB(A)	
Receiver 196	00 Outlet	Center D	rive FI	G dB(A)	Lr,lim	dB(A) L	r,lim dB(A) Lr, lin	m dB(A)	Leg-1ho	our dB(A)	Ldn 64	,7 dB(A)	Leg,d 67	7.7 dB(A)	Leq.e d	B(A) Leo	in dB(A)	Leg-1ho	our 68.1 dB	B(A)		Le:
Area	Leq-1ho ur			87.0	130.2	20697.5	0.0	0.0	3	289.12	-60.2	-4.6	-1.1	-0.6		0.0	1.4	68.1	0.0	0.0	0.0	68.1	
Receiver 190	00 Outlet	Center D	rive FI	F2 dB(A	Lr,lim	dB(A)	Lr,lim dB	(A) Lr.I	im dB(A) Leq-1h	nour dB(A)) Ldn 6	5.5 dB(A)	Leg,d 6	8.5 dB(A)	Leq.e	dB(A) Le	q,n dB(A)	Leq-1h	our 68.9 d	B(A)		
Area	Leq-1ho ur			87.0	130.2	20897.5	0.0	0.0	3	289.15	-60.2	-4.4	-1.0	-0.6	8	0.0	1.8	68.9	0.0	0.0	0.0	68.9	
Receiver 190	00 Outlet	Center D	rive FI	F3 dB(A) Lr.lim	dB(A)	Lr,fim dB	(A) Lr.I	lim dB(A	Leq-1	our dB(A)	Ldn 6	6.0 dB(A)	Leg,d 6	9.0 dB(A)	Leq.e	dB(A) Le	q,n dB(A)	Leq-1h	our 69.4 d	B(A)		
Area	Leq-1ho ur		32 - 73	87.0	130.2	20697.5	0.0	0.0	3	289.20	-60.2	-4.2	-0,6	-0.6		0.0	1.8	69.4	0.0	0.0	0.0	69.4	
Receiver 190	00 Outlet	Center D	rive FI	F4 dB(4) Lr,lim	dB(A)	Lr,lim dB	(A) Lr,i	im dB(A	Leq-1	our dB(A) Ldn 6	4.4 dB(A)	Leq.d 6	7.4 dB(A)	Leq.e	dB(A) Le	q.n dB(A)	Leq-1h	our 67.8 d	B(A)	61	5
Area	Leq-1ho ur			87.0	130.2	20897.5	0.0	0.0	3	289.29	-60.2	-4.0	-0.8	-0.6		0.0	0.0	67.8	0.0	0.0	0.0	67.8	
Receiver 202	24 Outlet	Center D	rive FI	G dB(A)	Lr,lim	dB(A) L	r,lim dB(A) Lr, lis	m dB(A)	Leq-1h	our dB(A)	Ldn 84	.9 dB(A)	Leq,d 6	7.9 dB(A)	Leq.e d	B(A) Lea	n dB(A)	Leg-1ho	our 88.3 dE	B(A)		
Area	Leq-1ho ur	4		87.0	130.2	20897.5	0.0	0.0	3	233.28	-58.3	-4.6	-1.5	-0.4		0.0	0.0	68.3	0.0	0.0	0.0	68.3	
Receiver 220	01 Outlet	Center D	rive, Cali	fornia Lut	heran Un	iversity	FIG d	iB(A) Li	r, lim dB(A) Lr,lin	dB(A) L	r,lim di	B(A) Leq	-1hour di	B(A) Ldn	77.1 dB(A) Leq.d	80.1 dB(A	A) Leq.e	dB(A) L	eq,n dB	(A) Leq-	1hour 80.5 dB(A)
Area	Leq-1ho ur			87.0	130.2	20697.5	0.0	0.0	3	75.09	-48.5	-3.5	-0.5	-0.1		0.0	0.0	80.5	0.0	0.0	0.0	80.5	
Receiver 22	11 E. Go	nzales Ro	ad, Padf	ic Senior	Living F	FIG dB	(A) Lr, lin	n dB(A)	Lr,im	dB(A) L	r,lim dB(A	A) Leq-	hour dB	A) Ldn	62.4 dB(A) Legd	65.4 dB(A) Lege	dB(A) L	eq.n dB(A) Leq-1	hour 65.8	dB(A)
Area	Leq-1ho ur			87.0	130.2	20697.5	0.0	0.0	3	334.92	-61.5	-4.6	-0.6	-0,6	É	0.0	0.0	65.8	0,0	0.0	0.0	65,8	
Receiver 22	11 E. Gor	nzales Ro	ad, Pacif	ic Senior	Living F	FIF2 dE	B(A) Lr,1	im dB(A) Lr,lim	dB(A)	Lr,lim dB(A) Leq	-1hour dB	(A) Ldn	62.6 dB(/	A) Leq.d	65.6 dB(A	A) Leq.e	dB(A) L	Leq,n dB(/	A) Leg-1	hour 66.0	0 dB(A)
Area	Leq-1ho ur		72	87.0	130.2	20697.5	0.0	0.0	3	334.94	-81,5	-4.5	-0,6	-0.6		0.0	0.0	66.0	0.0	0.0	0.0	88.0	
Receiver 22	11 E. Go	nzales Ro	ad, Pacif	ic Senior	Living F	FIF3 dE	B(A) Lr.I	im dB(A) Lr.lim	dB(A)	Lr, lim dB(A) Leq	Thour dB	(A) Ldn	63.0 dB(/	A) Leq.d	66.0 dB(/	A) Leq.e	dB(A) L	Leg,n dB(/	A) Leq-1	hour 66.3	3 dB(A)
Area	Leq-1ho ur			87.0	130.2	20897.5	0.0	0.0	3	334.98	-61.5	-4.3	-0.4	-0.8		0.0	0.0	66.3	0.0	0.0	0.0	66.3	22 mile 3
Receiver 22	11 E. Gor	nzales Ro	ad, Pacif	ic Senior	Living F	FIF4 dE	B(A) Lr,i	im dB(A) Lr.lim	dB(A)	Lr,lim dB(A) Leq	1hour dB	(A) Ldn	63.1 dB(/	A) Leq,d	66.1 dB(/	A) Leq.e	dB(A) 1	Leq,n dB(/	A) Leq-1	Thour 66.5	5 dB(A)
Area	Leq-1ho ur	is a second	CF - C)	87.0	130.2	20897.5	0.0	0.0	3	335.04	-61.5	-4.2	-0.3	-0.6		0.0	0.0	66.5	0.0	0.0	0.0	66.5	
Receiver Ou	tlet Cent	er Drive 1	902 FI	G dB(A)	Lr,lim	dB(A) L	r,lim dB(A) Lr.lin	m dB(A)	Leg-1ho	our dB(A)	Ldn 65	.5 dB(A)	Leg,d 6	3.5 dB(A)	Leg,e d	B(A) Leg	in dB(A)	Leg-1ho	our 68.9 dB	B(A)		

Lockwood Apartments Mean propagation Leq - Paving

10

Source type	Time slice	u	R'w	Lw	Lw	I or A	KI	KT	DO	S	Adiv	Agr	Abar	Aatm	Amisc	ADI	dLeft	Ls	Cmet	dLw	ZR	Lr	
5.		dB(A)	dB	dB(A)	dB(A)	m,m²	dB	dB	dB	m	dB	dB	dB	dB	dB	dB	dB(A)	dB(A)	dB	dB	dB	dB(A)	
Area	Leq-1ho ur			87.0	130.2	20697.5	0.0	0.0	3	253.55	-59.1	-4.6	-0.2	-0.5		0.0	0.0	68.9	0.0	0.0	0.0	68.9	

Meridian Consultants LLC

Report date:	9/18/2023
Case Description:	Architectural Coating

---- Receptor #1 ----

Baselines (dBA)

Description Land Use Daytime Evening Night
At 25 feet Residential 65 65 65

Equipment

Receptor Estimated Spec Actual Distance Shielding Impact Lmax Lmax Usage(%) (dBA) Description Device (dBA) (dBA) (feet) Compressor (air) 25 No 40 77.7 0

Results

	Calculated (dBA)		Noise Li	mits (dBA)					Noise Li	mit Exceeda	nce (dBA)		
		Day		Evening		Night		Day		Evening		Night	
Equipment	*Lmax Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq	Lmax	Leq
Compressor (air)	83.7	79.7 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total	83.7	79.7 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

^{*}Calculated Lmax is the Loudest value.

Lockwood Apartments Mean propagation Leq - Architectural Coating

Source type	Time slice	Li	R'w	L'w	Lw	I or A	KI	KT	DO	S	Adiv	Agr	Abar	Aatm	Amisc	ADI	dLefi	Ls	Cmet	dLw	ZR	Lr	
	31102	dB(A)	dB	dB(A)	dB(A)	m,mª	dB	dB	dB	m	dB	dB	dB	dB	dB	dB	dB(A)	dB(A)	dB	dB	dB	dB(A)	
Receiver 190	00 Outlet	Center D	rive FI	G dB(A)	Lr,lim	dB(A) L	r,lim dB(A) Lr,lin	n dB(A)	Leq-1ho	our dB(A)	Ldn 53	.5 dB(A)	Leq,d 56	.5 dB(A)	Leq.e d	B(A) Le	n dB(A)	Leq-1ho	ur 56.9 dB	B(A)		
Area	Leq-1ho ur		8 8	79.7	118.4	7418.6	0.0	0.0	3	297.15	-60.5	-4.6	-0.3	-0.6		0.0	1.4	56.9	0.0	0.0	0.0	56.9	8
Receiver 190	00 Outlet	Center D	rive FI	F2 dB(A	Lr,lim	dB(A)	Lr,lim dB	(A) Lr.I	im dB(A) Leq-1h	our dB(A) Ldn 5	4.2 dB(A)	Leg,d 5	7.2 dB(A)	Leq.e	dB(A) La	eg,n dB(A)	Leq-1h	our 57.6 d	B(A)		
Area	Leq-1ho ur			79.7	118.4	7418.6	0.0	0.0	3	297.18	-80.5	-4.4	-0.2	-0.6	\$	0.0	1.9	57.6	0,0	0.0	0.0	57.6	
Receiver 190	00 Outlet	Center D	rive FI	F3 dB(A) Lr.lim	dB(A)	Lr, lim dB	(A) Lr,I	im dB(A	Leq-1h	nour dB(A) Ldn 5	4.6 dB(A)	Leg,d 5	7.6 dB(A)	Leq.e	dB(A) Le	q,n dB(A)	Leq-1h	our 58.0 d	B(A)		
Area	Leq-1ho ur		2 7	79.7	118.4	7418.6	0.0	0.0	3	297.23	-60,5	-4.3	-0.1	-0.6		0.0	1.9	58.0	0.0	0.0	0.0	58.0	
Receiver 190	00 Outlet	Center D	rive FLI	F4 dB(4) Lr,lim	dB(A) I	Lr,lim dB	(A) Lr,i	m dB(A) Leq-1	nour dB(A	Ldn 5	2.8 dB(A)	Leq,d 5	5.9 dB(A)	Leq.e	dB(A) Le	q,n dB(A)	Leq-1h	our 56.2 d	B(A)	(a)	\$100 miles
Area	Leq-1ho ur			79.7	118.4	7418.6	0.0	0.0	3	297.30	-60.5	-4.1	-0.1	-0.6		0.0	0.0	56.2	0.0	0.0	0.0	56.2	
Receiver 202	24 Outlet	Center D	rive FI	G dB(A)	Lr,lim	dB(A) L	r,lim dB(A) Lr, lir	n dB(A)	Leq-1ho	our dB(A)	Ldn 53	7 dB(A)	Leq,d 56	7 dB(A)	Leq.e d	B(A) Lec	n dB(A)	Leq-1ho	ur 57.1 dB	(A)		
Area	Leq-1ho ur			79.7	118.4	7418.6	0.0	0.0	3	243.53	-58.7	-4.6	-0.5	-0.5		0.0	0.0	57.1	0.0	0.0	0.0	57,1	
Receiver 220	01 Outlet	Center D	rive, Cali	fornia Lut	heran Un	iversity	FIG d	iB(A) Lr	im dB(A) Lr,lim	dB(A) I	_r,fim di	B(A) Leq	-1hour di	B(A) Ldn	62.8 dB(A) Leq.d	65.8 dB(A	A) Leq,e	dB(A) L	eq,n dB(A) Leg-1	1hour 66.2 dB(A)
Area	Leq-1ho ur	Į	8 8	79.7	118.4	7418.6	0.0	0.0	3	96.51	-50.7	-4.3	-0.1	-0.2		0.0	0.0	66.2	0.0	0.0	0.0	66.2	
Receiver 22	11 E. Gor	zales Ro	ad, Padf	ic Senior	Living F	G dB	(A) Lr, lir	m dB(A)	Lr,im	dB(A) L	r,lim dB(A	A) Leq-1	hour dB	A) Ldn	51.0 dB(A) Legd	54.0 dB(A) Lege	dB(A) L	eq.n dB(A) Leq-1	hour 54.4	dB(A)
Area	Leq-1ho ur			79.7	118.4	7418.6	0.0	0.0	3	339.92	-61.6	-4.7	-0.1	-0.7	5	0.0	0.0	54.4	0,0	0.0	0.0	54.4	
Receiver 22	11 E. Gor	zales Ro	ad, Pacif	ic Senior	Living F	FIF2 dB	ا,تا (A)	im dB(A	Lr,lim	dB(A)	Lr,lim dB(A) Leq-	thour dB	(A) Ldn	51.1 dB(A	A) Leq.d	54.2 dB(/	A) Leq.e	dB(A) L	.eq,n_dB(/	A) Leg-1	hour 54.5	5 dB(A)
Area	Leq-1ho ur		- VA	79.7	118.4	7418.6	0.0	0.0	3	339.94	-61.6	-4.5	-0.1	-0.7		0.0	0.0	54.5	0.0	0.0	0.0	54.5	
Receiver 22	11 E. Gor	zales Ro	ad, Pacif	ic Senior	Living F	F3 dE	(A) Lr.I	im dB(A	Lr.lim	dB(A)	Lr, lim dB(A) Leq-	thour dB	(A) Ldn	51.4 dB(A	A) Leq.d	54.4 dB(A) Leq.e	dB(A) L	eq,n dB(/	A) Leq-1	hour 54,8	B dB(A)
Area	Leq-1ho ur			79.7	118.4	7418.6	0.0	0.0	3	339.98	-61.6	-4.4	0.0	-0.7		0.0	0.0	54,8	0.0	0.0	0.0	54.8	0 min s
Receiver 22	11 E. Gor	zales Ro	ad, Pacif	ic Senior	Living F	FIF4 dE	B(A) Lr,i	im dB(A	Lr,lim	dB(A)	Lr,im dB(A) Leq-	1hour dB	(A) Ldn	51,5 dB(A	A) Leq,d	54.5 dB(A) Leq.e	dB(A) L	.eq,n dB(/	A) Leq-1	hour 54.9	9 dB(A)
Area	Leq-1ho ur	3	02	79.7	118.4	7418.6	0.0	0.0	3	340.05	-61.6	-4.2	0.0	-0.7		0.0	0.0	54.9	0.0	0.0	0.0	54.9	
Receiver Ou	tlet Cente	r Drive 1	902 FI	G dB(A)	Lr,lim	dB(A) L	r,lim dB(A) Lr, lin	n dB(A)	Leg-1ho	our dB(A)	Ldn 53	8 dB(A)	Leg,d 56	(A)Bb 8.	Leg,e d	B(A) Lec	in dB(A)	Leg-1ho	ur 57,2 dB	B(A)		*

Lockwood Apartments Mean propagation Leq - Architectural Coating

4	^
1	
	v

Source type	Time slice	Li	R'w	L'w	Lw	I or A	KI	KT	DO	S	Adiv	Agr	Abar	Aatm	Amisc	ADI	dLefi	Ls	Cmet	dLw	ZR	Lr	
5.		dB(A)	dB	dB(A)	dB(A)	m,mª	dB	dB	dB	m	dB	dB	dB	dB	dB	dB	dB(A)	dB(A)	dB	dB	dB	dB(A)	
Area	Leq-1ho ur		8 8	79.7	118.4	7418.6	0.0	0.0	3	254.39	-59.1	-4.6	0.0	-0.5		0.0	0.0	57.2	0.0	0.0	0.0	57.2	

Meridian Consultants LLC

Lockwood Development 3 Construction Vibration Model Cal Lutheran

Equipment	Pieces of Equipment	PPV at 25 feet (in/sec)	Distance from Equipment	PPV at adjusted distance	RMS velocity amplitude in in/sec at adjusted distance ^a	RMS Vibration level in VdB at adjusted distance
Caisson drilling	1	0.089	45	0.037	0.009	79
Jackhammer	1	0.035	45	0.014	0.004	71
Large bulldozer	1	0.089	45	0.037	0.009	79
Loaded trucks	1	0.076	45	0.031	0.008	78
Pile Drive (impact)	1	0.644	45	0.267	0.067	96
Vibratory Roller	1	0.210	45	0.087	0.022	87
Small bulldozer	1	0.003	45	0.001	0.000	50

^{*} Suggested Vibration Thresholds per the Federal Transit Administration, United States Department of Transportation, Transit Noise and Vibration Impact Assessment

Lockwood Development 3 Construction Vibration Model 1901 Outlet Center Drive

Equipment	Pieces of Equipment	PPV at 25 feet (in/sec)	Distance from Equipment	PPV at adjusted distance	RMS velocity amplitude in in/sec at adjusted distance ^a	RMS Vibration level in VdB at adjusted distance	
Caisson drilling	1	0.089	600	0.001	0.000	46	
Jackhammer	1	0.035	600	0.000	0.000	37	
Large bulldozer	1	0.089	600	0.001	0.000	46	
Loaded trucks	1	0.076	600	0.001	0.000	44	
Pile Drive (impact)	1	0.644	600	0.005	0.001	63	
Vibratory Roller	1	0.210	600	0.002	0.000	53	
Small bulldozer	1	0.003	600	0.000	0.000	16	

^{*} Suggested Vibration Thresholds per the Federal Transit Administration, United States Department of Transportation, Transit Noise and Vibration Impact Assessment

Lockwood Development 3 Construction Vibration Model 2024 Outlet Center Drive

Equipment	Pieces of Equipment		PPV at 25 feet (in/sec)	Distance from Equipment	PPV at adjusted distance	RMS velocity amplitude in in/sec at adjusted distance ^a	RMS Vibration level in VdB at adjusted distance	
Caisson drilling		1	0.089	450	0.001	0.000	49	
Jackhammer		1	0.035	450	0.000	0.000	41	
Large bulldozer		1	0.089	450	0.001	0.000	49	
Loaded trucks		1	0.076	450	0.001	0.000	48	
Pile Drive (impact)		1	0.644	450	0.008	0.002	66	
Vibratory Roller		1	0.210	450	0.003	0.001	57	
Small bulldozer		1	0.003	450	0.000	0.000	20	

^{*} Suggested Vibration Thresholds per the Federal Transit Administration, United States Department of Transportation, Transit Noise and Vibration Impact Assessment

Lockwood Development 3 Construction Vibration Model 1900 Outlet Center Drive

Equipment	Pieces of Equipment		PPV at 25 feet (in/sec)	Distance from Equipment	PPV at adjusted distance	RMS velocity amplitude in in/sec at adjusted distance ^a	RMS Vibration level in VdB at adjusted distance	
Caisson drilling		1	0.089	620	0.001	0.000	45	
Jackhammer		1	0.035	620	0.000	0.000	37	
Large bulldozer		1	0.089	620	0.001	0.000	45	
Loaded trucks		1	0.076	620	0.001	0.000	44	
Pile Drive (impact)		1	0.644	620	0.005	0.001	62	
Vibratory Roller		1	0.210	620	0.002	0.000	53	
Small bulldozer		1	0.003	620	0.000	0.000	16	

^{*} Suggested Vibration Thresholds per the Federal Transit Administration, United States Department of Transportation, Transit Noise and Vibration Impact Assessment

Lockwood Development 3 Construction Vibration Model Pacific Senior Living

Equipment	Pieces of Equipment	PPV at 25 feet (in/sec)	Distance from Equipment	PPV at adjusted distance	RMS velocity amplitude in in/sec at adjusted distance ^a	RMS Vibration level in VdB at adjusted distance	
Caisson drilling	1	0.089	670	0.001	0.000	44	
Jackhammer	1	0.035	670	0.000	0.000	36	
Large bulldozer	1	0.089	670	0.001	0.000	44	
Loaded trucks	1	0.076	670	0.001	0.000	43	
Pile Drive (impact)	1	0.644	670	0.005	0.001	61	
Vibratory Roller	1	0.210	670	0.002	0.000	52	
Small bulldozer	1	0.003	670	0.000	0.000	15	

^{*} Suggested Vibration Thresholds per the Federal Transit Administration, United States Department of Transportation, Transit Noise and Vibration Impact Assessment

Lockwood Apartments Assessed receiver spectra in dB(A) - Lockwood Development 3

Time	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz		
slice	301.12	120112	200112		17.0 12	2.0.12		Old IE		
	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)		
Receiver Lockwoo	d 3 Apartm	ents FIG	dB(A)	Lr,lim dB(A	Lr,lim	dB(A) Lr,li	m dB(A)	Leq-1hour	dB(A)	Ld
Ldn	44.6	51.7	52.7	57.1	55.9	44.4	32.1	28.2		
Receiver Lockwoo	d 3 Apartm	ents FIF2	dB(A)	Lr,lim dB(/	A) Lr,lim	dB(A) Lr,	lim dB(A)	Leq-1hour	dB(A)	L
Ldn	47.2	54.2	55.4	59.9	58.2	47.3	35.0	31.7		
Receiver Lockwoo	d 3 Apartm	ents FIF3	dB(A)	Lr,lim dB(/	A) Lr,lim	dB(A) Lr,	lim dB(A)	Leq-1hour	dB(A)	L
Ldn	45.3	52.3	53.3	59.0	57.2	45.9	33.9	29.7	C	
Receiver Lockwoo	d 3 Apartm	ents FIF4	dB(A)	Lr,lim dB(/	A) Lr,lim	dB(A) Lr.	lim dB(A)	Leq-1hour	dB(A)	L
Ldn	44.0	51.1	52.2	58.7	56.3	44.7	32.6	28.5	S	
Receiver Lockwoo	d 3 Apartm	ents FIG	dB(A)	Lr,lim dB(A	Lr,lim	dB(A) Lr,li	m dB(A)	Leq-1hour	dB(A)	Ld
Ldn	45.3	52.4	53.3	57.6	56.4	45.0	31.9	28.2	· ·	
Receiver Lockwoo	d 3 Apartm	ents FIF2	dB(A)	Lr,lim dB(/	A) Lr,lim	dB(A) Lr,	lim dB(A)	Leq-1hour	dB(A)	Li
Ldn	45.8	52.8	53.7	58.7	57.1	45.6	32.8	28.7		
Receiver Lockwoo	d 3 Apartm	ents FIF3	dB(A)	Lr,lim dB(/	A) Lr,lim	dB(A) Lr,	lim dB(A)	Leq-1hour	dB(A)	b
Ldn	44.7	51.7	52.8	58.6	56.5	44.7	31.6	28.2		
Receiver Lockwoo	d 3 Apartm	ents FIF4	dB(A)	Lr,lim dB(/	A) Lr,lim	dB(A) Lr,	lim dB(A)	Leq-1hour	dB(A)	L
Ldn	44.8	51.8	53.0	59.0	57.1	44.9	32.1	27.8	C	
Receiver Lockwoo	d Senior A	partments (I)	FIG	dB(A) Lr,li	m dB(A)	Lr,lim dB(A) Lr,lim	dB(A) Led	q-1hour	dE
Ldn	36.0	42.9	41.8	44.1	44.6	37.4	24.7	19.3	(2. 32	
Receiver Lockwoo	d Senior A	partments (I)	FIF2	dB(A) Lr,	lim dB(A)	Lr,lim dB	(A) Lr,lim	dB(A) Le	q-1hour	d
Ldn	36.8	43.8	44.2	49.6	49.6	39.3	26.3	22.3	C)	
Receiver Lockwoo	d Senior A	partments (I)	FIF3	dB(A) Lr,	lim dB(A)	Lr,lim dB	(A) Lr,lim	dB(A) Le	q-1hour	d
Ldn	38.8	45.9	47.6	54.4	54.1	43.8	31.6	26.9		
Receiver Lockwoo	d Senior A	partments (I)	FIF4	dB(A) Lr,I	lim dB(A)	Lr,lim dB	(A) Lr,lim	dB(A) Le	q-1hour	d
Ldn	39.9	47.2	50.5	58.3	58.5	48.7	37.0	32.3		
Receiver Lockwoo	d Senior A	partments (I)	FIG	dB(A) Lr,li	m dB(A)	Lr,lim dB(A) Lr,lim	dB(A) Led	q-1hour	dE
Ldn	36.3	43.3	43.0	45.1	45.4	38.4	26.9	21.1	ė.	
Receiver Lockwoo	d Senior A	partments (I)	FIF2	dB(A) Lr,	lim dB(A)	Lr,lim dB	(A) Lr,lim	dB(A) Le	q-1hour	d
Ldn	37.1	44.2	45.1	51.0	51.4	41.9	29.0	24.4	C75 -C	
Receiver Lockwoo	d Senior A	partments (I)	FIF3	dB(A) Lr,	lim dB(A)	Lr,lim dB	(A) Lr,lim	dB(A) Le	q-1hour	r d
Ldn	38.9	46.0	48.1	55.1	55.2	45.3	33.2	28.8	C)	
Receiver Lockwoo	d Senior A	partments (I)	FIF4	dB(A) Lr,	lim dB(A)	Lr,lim dB	(A) Lr,lim	dB(A) Le	q-1hour	d
Ldn	39.7	47.0	50.3	58.0	58.3	48.5	36.9	32.3		
Receiver Lockwoo	d Senior A	partments (I)	FIG	dB(A) Lr,li	m dB(A)	Lr,lim dB(A) Lr,lim	dB(A) Led	q-1hour	dE
Ldn	38.8	45.7	45.6	48.1	48.6	40.6	29.7	23.5	2	
Receiver Lockwoo	d Senior A	partments (I)	FIF2	dB(A) Lr,	lim dB(A)	Lr,lim dB	(A) Lr,lim	dB(A) Le	q-1hour	d
Ldn	39.0	46.0	46.9	52.6	53.4	44.4	31.8	26.8	0	
Receiver Lockwoo	d Senior A	partments (I)	FIF3	dB(A) Lr,	lim dB(A)	Lr,lim dB	(A) Lr,lim	dB(A) Le	q-1hour	d
Ldn	39.8	46.9	49.1	56.3	56.7	47.3	34.9	30.3	67 c	
	On I	0.0		Am - A		XXII	X20	XIII	Kon .	

Meridian Consulting LLC 920 Hampshire Rd, Ste V Westlake Village, CA 91361

Lockwood Apartments Assessed receiver spectra in dB(A) - Lockwood Development 3

Time	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	
slice									
SAN-ENGINE	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	
Receiver Lockwo	od Senior A	partments ((I) FI F4	dB(A) L	r, lim dB(A)	Lr,lim dB	(A) Lr,lim	dB(A) Le	q-1hour d
Ldn	40.3	47.5	50.8	58.5	59.1	49.4	37.5	33.0	
Receiver Lockwo	od Street A	partments (II) FIG	dB(A) Lr	lim dB(A)	Lr,lim dB(A) Lr,lim	dB(A) Le	q-1hour dE
Ldn	40.0	46.9	45.9	47.6	48.9	41.2	29.5	23.1	·
Receiver Lockwo	od Street A	oartments (II) FIF2	dB(A) L	r, lim dB(A)	Lr,lim dB	(A) Lr,lim	dB(A) Le	q-1hour d
Ldn	40.6	47.5	47.3	52.7	54.2	45.1	31.8	26.5	C:
Receiver Lockwo	od Street A	partments (II) FI F3	dB(A) L	r, lim dB(A)	Lr,lim dB	(A) Lr,lim	dB(A) Le	q-1hour d
Ldn	40.9	47.9	49.3	56.6	57.0	47.6	34.8	30.8	(20)
Receiver Lockwo	od Street Ap	partments (II) FI F4	dB(A) L	r, lim dB(A)	Lr,lim dB	(A) Lr,lim	dB(A) Le	q-1hour d
Ldn	40.9	48.0	50.3	58.0	58.6	48.9	36.4	32.2	
Receiver Noise M	leasuremen	t Area FI	G dB(A)	Lr,lim di	B(A) Lr,lim	dB(A) Lr,	lim dB(A)	Leq-1hour	dB(A) L
Ldn	38.6	45.6	45.2	43.0	41.3	32.4	24.2	18.9	
Receiver Noise M	leas uremen	t Area FII	F2 dB(A)	Lr,lim d	IB(A) Lr,lim	dB(A) Lr	,lim dB(A)	Leq-1hou	ır dB(A)
Ldn	39.7	46.6	45.7	48.7	49.9	42.2	29.8	24.4	2.
Receiver Noise N	leasuremen	t Area FII	F3 dB(A)	Lr,lim d	IB(A) Lr,lim	dB(A) Lr	,lim dB(A)	Leq-1hou	r dB(A)
Ldn	40.1	47.1	47.3	53.2	54.4	45.1	32.5	27.8	0
Receiver Noise M	leasuremen	t Area FII	F4 dB(A)	Lr,lim d	IB(A) Lr,lim	dB(A) Lr	,lim dB(A)	Leq-1hou	ir dB(A)
Ldn	40.9	48.0	49.6	57.0	57.1	47.3	35.0	30.8	0 28

Meridian Consulting LLC 920 Hampshire Rd, Ste V Westlake Village, CA 91361